RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2010, Volume 74, Issue 4, Pages 75–82 (Mi izv4080)  

This article is cited in 4 scientific papers (total in 4 papers)

Steiner symmetrization and the initial coefficients of univalent functions

V. N. Dubinin

Institute of Applied Mathematics, Far-Eastern Branch of the Russian Academy of Sciences

Abstract: We establish the inequality $|a_1|^2-\operatorname{Re}a_1a_{-1}\ge |a_1^*|^2-\operatorname{Re}a_1^*a_{-1}^*$ for the initial coefficients of any function $f(z)=a_1z+a_0+{a_{-1}}/z+\dotsb$ meromorphic and univalent in the domain $D=ż\colon |z|>1\}$, where $a_1^*$ and $a_{-1}^*$ are the corresponding coefficients in the expansion of the function $f^*(z)$ that maps the domain $D$ conformally and univalently onto the exterior of the result of the Steiner symmetrization with respect to the real axis of the complement of the set $f(D)$. The Pólya–Szegő inequality $|a_1|\ge |a_1^*|$ is already known. We describe some applications of our inequality to functions of class $\Sigma$.

Keywords: Steiner symmetrization, capacity of a set, univalent function, covering theorem.

DOI: https://doi.org/10.4213/im4080

Full text: PDF file (457 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2010, 74:4, 735–742

Bibliographic databases:

UDC: 517.54
MSC: Primary 30C50; Secondary 30C85
Received: 27.01.2009

Citation: V. N. Dubinin, “Steiner symmetrization and the initial coefficients of univalent functions”, Izv. RAN. Ser. Mat., 74:4 (2010), 75–82; Izv. Math., 74:4 (2010), 735–742

Citation in format AMSBIB
\Bibitem{Dub10}
\by V.~N.~Dubinin
\paper Steiner symmetrization and the initial coefficients of univalent functions
\jour Izv. RAN. Ser. Mat.
\yr 2010
\vol 74
\issue 4
\pages 75--82
\mathnet{http://mi.mathnet.ru/izv4080}
\crossref{https://doi.org/10.4213/im4080}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2730011}
\zmath{https://zbmath.org/?q=an:1202.30039}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2010IzMat..74..735D}
\elib{http://elibrary.ru/item.asp?id=20358755}
\transl
\jour Izv. Math.
\yr 2010
\vol 74
\issue 4
\pages 735--742
\crossref{https://doi.org/10.1070/IM2010v074n04ABEH002505}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000281623100004}
\elib{http://elibrary.ru/item.asp?id=16980381}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78049378849}


Linking options:
  • http://mi.mathnet.ru/eng/izv4080
  • https://doi.org/10.4213/im4080
  • http://mi.mathnet.ru/eng/izv/v74/i4/p75

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. N. Dubinin, “Lower bounds for the half-plane capacity of compact sets and symmetrization”, Sb. Math., 201:11 (2010), 1635–1646  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    2. V. N. Dubinin, “Asymptotic Behavior of the Capacity of a Condenser as Some of Its Plates Contract to Points”, Math. Notes, 96:2 (2014), 187–198  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    3. V. N. Dubinin, “Geometric estimates for the Schwarzian derivative”, Russian Math. Surveys, 72:3 (2017), 479–511  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    4. Dubinin V.N., “Some Unsolved Problems About Condenser Capacities on the Plane”, Complex Analysis and Dynamical Systems: New Trends and Open Problems, Trends in Mathematics, ed. Agranovsky M. Golberg A. Jacobzon F. Shoikhet D. Zalcman L., Birkhauser Verlag Ag, 2018, 81–92  crossref  mathscinet  isi  scopus
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:557
    Full text:97
    References:36
    First page:15

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019