RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2011, Volume 75, Issue 1, Pages 71–100 (Mi izv4103)  

This article is cited in 1 scientific paper (total in 1 paper)

A saddle-point theorem for strongly and weakly convex functions

G. E. Ivanov

Moscow Institute of Physics and Technology

Abstract: We prove a theorem on the existence, uniqueness, and continuous dependence on parameters for a saddle point in a type of minimax problem that arises, for example, in differential game theory. Our theorem on the existence of a saddle point does not follow from the well-known theorems of von Neumann, Ky Fan, Sion and others since the intersection of sublevel sets of the function considered may be disconnected and non-empty. The hypotheses of our theorem are stated in terms of the strong and weak convexity of functions defined on a Banach space. We study properties of strongly and weakly convex functions related to the operations of minimization and maximization. We obtain unimprovable estimates of convexity parameters for the infimal convolution (episum) and epidifference of functions. This results in the construction of a calculus of convexity parameters of functions with respect to epioperations. We give typical examples and show that the hypotheses of our theorems are essential.

Keywords: saddle point, minimax, strong and weak convexity, differential game.

DOI: https://doi.org/10.4213/im4103

Full text: PDF file (624 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2011, 75:1, 73–100

Bibliographic databases:

UDC: 517.982.252
MSC: 49J45, 52A41, 26B25, 91A10
Received: 27.03.2009
Revised: 19.06.2009

Citation: G. E. Ivanov, “A saddle-point theorem for strongly and weakly convex functions”, Izv. RAN. Ser. Mat., 75:1 (2011), 71–100; Izv. Math., 75:1 (2011), 73–100

Citation in format AMSBIB
\Bibitem{Iva11}
\by G.~E.~Ivanov
\paper A saddle-point theorem for strongly and weakly convex functions
\jour Izv. RAN. Ser. Mat.
\yr 2011
\vol 75
\issue 1
\pages 71--100
\mathnet{http://mi.mathnet.ru/izv4103}
\crossref{https://doi.org/10.4213/im4103}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2815996}
\zmath{https://zbmath.org/?q=an:1210.49009}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2011IzMat..75...73I}
\elib{http://elibrary.ru/item.asp?id=20358778}
\transl
\jour Izv. Math.
\yr 2011
\vol 75
\issue 1
\pages 73--100
\crossref{https://doi.org/10.1070/IM2011v075n01ABEH002528}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000287579900004}
\elib{http://elibrary.ru/item.asp?id=18007975}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80053471830}


Linking options:
  • http://mi.mathnet.ru/eng/izv4103
  • https://doi.org/10.4213/im4103
  • http://mi.mathnet.ru/eng/izv/v75/i1/p71

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Li X.-B., Lin Zh., Wang Q.-L., Chen j.-W., “Holder Continuity of the Saddle Point Set For Real-Valued Functions”, Numer. Funct. Anal. Optim., 38:11 (2017), 1410–1425  crossref  mathscinet  zmath  isi  scopus
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:901
    Full text:145
    References:57
    First page:50

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019