RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2011, Volume 75, Issue 6, Pages 195–222 (Mi izv4129)  

This article is cited in 3 scientific papers (total in 3 papers)

The structure of homomorphisms of connected locally compact groups into compact groups

A. I. Shternab

a M. V. Lomonosov Moscow State University
b Scientific Research Institute for System Studies of RAS, Moscow

Abstract: We obtain consequences of the theorem concerning the automatic continuity of locally bounded finite-dimensional representations of connected Lie groups on the commutator subgroup of the group and also of an analogue of Lie's theorem for (not necessarily continuous) finite-dimensional representations of soluble Lie groups. In particular, we prove that an almost connected locally compact group admitting a (not necessarily continuous) injective homomorphism into a compact group also admits a continuous injective homomorphism into a compact group, and thus the given group is a finite extension of the direct product of a compact group and a vector group. We solve the related problem of describing the images of (not necessarily continuous) homomorphisms of connected locally compact groups into compact groups. Moreover, we refine the description of the von Neumann kernel of a connected locally compact group and describe the intersection of the kernels of all (not necessarily continuous) finite-dimensional unitary representations of a given connected locally compact group. Some applications are mentioned. We also show that every almost connected locally compact group admitting a (not necessarily continuous) locally bounded injective homomorphism into an amenable almost connected locally compact group is amenable.

Keywords: locally compact group, almost connected locally compact group, Freudenthal–Weil theorem, $[\mathrm{MAP}]$-group, semisimple locally compact group, locally bounded map.

DOI: https://doi.org/10.4213/im4129

Full text: PDF file (637 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2011, 75:6, 1279–1304

Bibliographic databases:

UDC: 512.546+517.986.6+512.815.1
MSC: Primary 22D10; Secondary 43A65, 46H40
Received: 25.06.2009
Revised: 23.06.2010

Citation: A. I. Shtern, “The structure of homomorphisms of connected locally compact groups into compact groups”, Izv. RAN. Ser. Mat., 75:6 (2011), 195–222; Izv. Math., 75:6 (2011), 1279–1304

Citation in format AMSBIB
\Bibitem{Sht11}
\by A.~I.~Shtern
\paper The structure of homomorphisms of connected locally compact groups into compact groups
\jour Izv. RAN. Ser. Mat.
\yr 2011
\vol 75
\issue 6
\pages 195--222
\mathnet{http://mi.mathnet.ru/izv4129}
\crossref{https://doi.org/10.4213/im4129}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2918898}
\zmath{https://zbmath.org/?q=an:1242.22006}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2011IzMat..75.1279S}
\elib{https://elibrary.ru/item.asp?id=20358823}
\transl
\jour Izv. Math.
\yr 2011
\vol 75
\issue 6
\pages 1279--1304
\crossref{https://doi.org/10.1070/IM2011v075n06ABEH002572}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000298497200008}
\elib{https://elibrary.ru/item.asp?id=18031610}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84455189168}


Linking options:
  • http://mi.mathnet.ru/eng/izv4129
  • https://doi.org/10.4213/im4129
  • http://mi.mathnet.ru/eng/izv/v75/i6/p195

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. I. Shtern, “Connected locally compact groups: The Hochschild kernel and faithfulness of locally bounded finite-dimensional representations”, Trans. Moscow Math. Soc., 72 (2011), 79–95  mathnet  crossref  zmath  elib
    2. A. I. Shtern, “The structure of locally bounded finite-dimensional representations of connected locally compact groups”, Sb. Math., 205:4 (2014), 600–611  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. Bergelson V., Christopherson J.C., Robertson D., Zorin-Kranich P., “Finite products sets and minimally almost periodic groups”, J. Funct. Anal., 270:6 (2016), 2126–2167  crossref  mathscinet  zmath  isi  scopus
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:376
    Full text:82
    References:47
    First page:13

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021