|
This article is cited in 7 scientific papers (total in 7 papers)
A dyadic analogue of Wiener's Tauberian theorem and some related questions
B. I. Golubov Moscow Engineering Physics Institute (State University)
Abstract:
A dyadic analogue is proved of Wiener's Tauberian convolution theorem for two functions. Closedness criteria are established for the linear span of the set of binary shifts
$\{f( \circ\oplus y)\colon y\geqslant 0\}$ for a given function $f\in L(\mathbb R_+)$ or
$f\in L^2(\mathbb R_+)$. A consequence of these criteria is that the linear span of the set of binary shifts $\{f( \circ\oplus y)\colon 0\leqslant y\leqslant 1\}$ for a given function
$f\in L([0,1))$ ($f\in L^2([0,1))$) is dense in the space $L([0,1))$ ($L^2([0,1))$) if and only if all the Fourier coefficients of $f$ with respect to the orthonormalized Walsh system on $[0,1)$
are non-zero.
DOI:
https://doi.org/10.4213/im417
Full text:
PDF file (1907 kB)
References:
PDF file
HTML file
English version:
Izvestiya: Mathematics, 2003, 67:1, 29–53
Bibliographic databases:
UDC:
517.5
MSC: 11M45, 30B50, 40E05, 42A32, 42A38, 42C10, 42C10, 44A10, 47A10 Received: 15.03.2002
Citation:
B. I. Golubov, “A dyadic analogue of Wiener's Tauberian theorem and some related questions”, Izv. RAN. Ser. Mat., 67:1 (2003), 33–58; Izv. Math., 67:1 (2003), 29–53
Citation in format AMSBIB
\Bibitem{Gol03}
\by B.~I.~Golubov
\paper A~dyadic analogue of Wiener's Tauberian theorem and some related questions
\jour Izv. RAN. Ser. Mat.
\yr 2003
\vol 67
\issue 1
\pages 33--58
\mathnet{http://mi.mathnet.ru/izv417}
\crossref{https://doi.org/10.4213/im417}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1957915}
\zmath{https://zbmath.org/?q=an:1067.42016}
\transl
\jour Izv. Math.
\yr 2003
\vol 67
\issue 1
\pages 29--53
\crossref{https://doi.org/10.1070/IM2003v067n01ABEH000417}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000185513200003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748513297}
Linking options:
http://mi.mathnet.ru/eng/izv417https://doi.org/10.4213/im417 http://mi.mathnet.ru/eng/izv/v67/i1/p33
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
B. I. Golubov, “Fractional Modified Dyadic Integral and Derivative on $\mathbb{R}_+$”, Funct. Anal. Appl., 39:2 (2005), 64–70
-
B. I. Golubov, “Modified Dyadic Integral and Fractional Derivative on $\mathbb R_+$”, Math. Notes, 79:2 (2006), 196–214
-
Golubov B.I., “On approximation by convolutions and bases of shifts of a function”, Anal. Math., 34:1 (2008), 9–28
-
S. S. Volosivets, “Applications of $\mathbf P$-adic generalized functions and approximations by a system of $\mathbf P$-adic translations of a function”, Siberian Math. J., 50:1 (2009), 1–13
-
S. V. Kozyrev, A. Yu. Khrennikov, V. M. Shelkovich, “$p$-Adic wavelets and their applications”, Proc. Steklov Inst. Math., 285 (2014), 157–196
-
S. S. Platonov, “An Analog of Titchmarsh's Theorem for the Fourier–Walsh Transform”, Math. Notes, 103:1 (2018), 96–103
-
S. S. Platonov, “On the Fourier–Walsh Transform of Functions from Dyadic Dini–Lipschitz Classes on the Semiaxis”, Math. Notes, 108:2 (2020), 229–242
|
Number of views: |
This page: | 600 | Full text: | 115 | References: | 38 | First page: | 1 |
|