|
This article is cited in 11 scientific papers (total in 12 papers)
Harmonic analysis on local fields and adelic spaces. II
D. V. Osipov, A. N. Parshin Steklov Mathematical Institute, Russian Academy of Sciences
Abstract:
We develop harmonic analysis in certain categories of filtered Abelian
groups and vector spaces. The objects of these categories include
local fields and adelic spaces arising from arithmetic surfaces.
We prove some structure theorems for quotients of the adèle groups
of algebraic and arithmetic surfaces.
Keywords:
arithmetic surfaces, higher adèles, harmonic analysis, Fourier transform,
Poisson summation formulae.
DOI:
https://doi.org/10.4213/im4278
Full text:
PDF file (1057 kB)
References:
PDF file
HTML file
English version:
Izvestiya: Mathematics, 2011, 75:4, 749–814
Bibliographic databases:
Document Type:
Article
UDC:
512.75
MSC: 11R56, 18B30, 43A70 Received: 22.12.2009 Revised: 10.12.2010
Citation:
D. V. Osipov, A. N. Parshin, “Harmonic analysis on local fields and adelic spaces. II”, Izv. RAN. Ser. Mat., 75:4 (2011), 91–164; Izv. Math., 75:4 (2011), 749–814
Citation in format AMSBIB
\Bibitem{OsiPar11}
\by D.~V.~Osipov, A.~N.~Parshin
\paper Harmonic analysis on local fields and adelic spaces. II
\jour Izv. RAN. Ser. Mat.
\yr 2011
\vol 75
\issue 4
\pages 91--164
\mathnet{http://mi.mathnet.ru/izv4278}
\crossref{https://doi.org/10.4213/im4278}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2866188}
\zmath{https://zbmath.org/?q=an:1232.11122}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2011IzMat..75..749O}
\elib{http://elibrary.ru/item.asp?id=20358802}
\transl
\jour Izv. Math.
\yr 2011
\vol 75
\issue 4
\pages 749--814
\crossref{https://doi.org/10.1070/IM2011v075n04ABEH002552}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000294215000005}
\elib{http://elibrary.ru/item.asp?id=18008196}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80053548528}
Linking options:
http://mi.mathnet.ru/eng/izv4278https://doi.org/10.4213/im4278 http://mi.mathnet.ru/eng/izv/v75/i4/p91
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
Cycle of papers
This publication is cited in the following articles:
-
A. N. Parshin, “Notes on the Poisson formula”, St. Petersburg Math. J., 23:5 (2012), 781–818
-
Previdi L., “Locally compact objects in exact categories”, Internat. J. Math., 22:12 (2011), 1787–1821
-
Osipov D.V., Parshin A.N., “Harmonic analysis and the Riemann-Roch theorem”, Dokl. Math., 84:3 (2011), 826–829
-
S. V. Vostokov, S. O. Gorchinskiy, A. B. Zheglov, Yu. G. Zarkhin, Yu. V. Nesterenko, D. O. Orlov, D. V. Osipov, V. L. Popov, A. G. Sergeev, I. R. Shafarevich, “Aleksei Nikolaevich Parshin (on his 70th birthday)”, Russian Math. Surveys, 68:1 (2013), 189–197
-
D. V. Osipov, “The unramified two-dimensional Langlands correspondence”, Izv. Math., 77:4 (2013), 714–741
-
A. Cámara, “Locally convex structures on higher local fields”, J. Number Theory, 143 (2014), 185–213
-
Ivan Fesenko, “Geometric adeles and the Riemann–Roch theorem for $1$-cycles on surfaces”, Mosc. Math. J., 15:3 (2015), 435–453
-
D. V. Osipov, A. N. Parshin, “Representations of the discrete Heisenberg group on distribution spaces of two-dimensional local fields”, Proc. Steklov Inst. Math., 292 (2016), 185–201
-
Liu D., “Residues and duality on semi-local two-dimensional adeles”, J. Algebra, 448 (2016), 74–83
-
Liu D., Zhu Y., “Lca(2), Weil Index, and Product Formula”, Adv. Math., 329 (2018), 1088–1136
-
D. V. Osipov, “Adelic quotient group for algebraic surfaces”, St. Petersburg Math. J., 30 (2019), 111–122
-
D. V. Osipov, “Arithmetic surfaces and adelic quotient groups”, Izv. Math., 82:4 (2018), 817–836
|
Number of views: |
This page: | 535 | Full text: | 69 | References: | 21 | First page: | 11 |
|