General information
Latest issue
Forthcoming papers
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Izv. RAN. Ser. Mat.:

Personal entry:
Save password
Forgotten password?

Izv. RAN. Ser. Mat., 2003, Volume 67, Issue 4, Pages 67–154 (Mi izv443)  

This article is cited in 7 scientific papers (total in 7 papers)

Asymptotic behaviour of the spectra of integral convolution operators on a finite interval with homogeneous polar kernels

B. V. Pal'tsev

Dorodnitsyn Computing Centre of the Russian Academy of Sciences

Abstract: We obtain asymptotic formulae for the eigenvalues of integral convolution operators on a finite interval with homogeneous polar (complex) kernels. In the Fourier–Laplace images, the eigenvalue and eigenfunction problems are reduced to the Hilbert linear conjugation problem for a holomorphic vector-valued function with two components. This problem is in turn reduced to a system of integral equations on the half-line, and analytic properties of solutions of this system are studied in the Mellin images in Banach spaces of holomorphic functions with fixed poles. We study the structure of the canonical matrix of solutions of this Hilbert problem at the singular points, along with its asymptotic behaviour for large values of the reduced spectral parameter. The investigation of the resulting characteristic equations yields three terms (four in the positive self-adjoint case) of the asymptotic expansions of the eigenvalues, along with estimates of the remainders.


Full text: PDF file (6239 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2003, 67:4, 695–779

Bibliographic databases:

UDC: 517.948.32+35
MSC: 45E10, 45C05, 30E25
Received: 23.05.2002

Citation: B. V. Pal'tsev, “Asymptotic behaviour of the spectra of integral convolution operators on a finite interval with homogeneous polar kernels”, Izv. RAN. Ser. Mat., 67:4 (2003), 67–154; Izv. Math., 67:4 (2003), 695–779

Citation in format AMSBIB
\by B.~V.~Pal'tsev
\paper Asymptotic behaviour of the spectra of integral convolution operators on a~finite interval with homogeneous polar kernels
\jour Izv. RAN. Ser. Mat.
\yr 2003
\vol 67
\issue 4
\pages 67--154
\jour Izv. Math.
\yr 2003
\vol 67
\issue 4
\pages 695--779

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. K. Kerimov, “Boris Vasil'evich Pal'tsev (on the occasion of his seventieth birthday)”, Comput. Math. Math. Phys., 50:7 (2010), 1113–1119  mathnet  crossref  mathscinet  adsnasa  isi  elib
    2. S. I. Bezrodnykh, V. I. Vlasov, “Singular Riemann–Hilbert problem in complex-shaped domains”, Comput. Math. Math. Phys., 54:12 (2014), 1826–1875  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    3. A. G. Barsegyan, “O reshenii uravneniya svertki s summarno-raznostnym yadrom”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 19:4 (2015), 613–623  mathnet  crossref  zmath  elib
    4. Polosin A.A., “On Eigenfunctions of a Convolution Operator on a Finite Interval For Which the Fourier Image of the Kernel Is the Characteristic Function”, Dokl. Math., 96:1 (2017), 389–392  crossref  mathscinet  zmath  isi  scopus
    5. Polosin A.A., “Spectrum and Eigenfunctions of the Convolution Operator on a Finite Interval With Kernel Whose Transform Is a Characteristic Function”, Differ. Equ., 53:9 (2017), 1145–1159  crossref  mathscinet  zmath  isi  scopus
    6. Chigansky P. Kleptsyna M., “Exact Asymptotics in Eigenproblems For Fractional Brownian Covariance Operators”, Stoch. Process. Their Appl., 128:6 (2018), 2007–2059  crossref  mathscinet  isi  scopus
    7. Chigansky P., Kleptsyna M., Marushkevych D., “Mixed Fractional Brownian Motion: a Spectral Take”, J. Math. Anal. Appl., 482:2 (2020), 123558  crossref  isi
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:447
    Full text:156
    First page:1

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020