RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2003, Volume 67, Issue 5, Pages 3–34 (Mi izv449)  

This article is cited in 2 scientific papers (total in 2 papers)

Interpolation by symmetric functions and alternating higher Bruhat orders

G. G. Ilyuta


Abstract: We study interpolation by Grassmannian Schubert polynomials (Schur functions). We prove versions of the Sturmfels–Zelevinsky formula for the product of the maximal minors of rectangular matrices corresponding to elementary symmetric functions and Schur functions, and deduce from them generalizations of formulae for the Cauchy–Vandermonde determinant and Cauchy's formula for Schur functions. We define generalizations of higher Bruhat orders whose elements encode connected components of configuration spaces, and also generalizations of discriminantal Manin–Schechtman arrangements.

DOI: https://doi.org/10.4213/im449

Full text: PDF file (2213 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2003, 67:5, 849–880

Bibliographic databases:

UDC: 519.651
MSC: 41A05, 41A63, 13F99, 58K20, 06A06, 58K40, 05E05, 12H10, 55R80, 58C25, 58K99, 32S25
Received: 26.12.2001

Citation: G. G. Ilyuta, “Interpolation by symmetric functions and alternating higher Bruhat orders”, Izv. RAN. Ser. Mat., 67:5 (2003), 3–34; Izv. Math., 67:5 (2003), 849–880

Citation in format AMSBIB
\Bibitem{Ily03}
\by G.~G.~Ilyuta
\paper Interpolation by symmetric functions and alternating higher Bruhat orders
\jour Izv. RAN. Ser. Mat.
\yr 2003
\vol 67
\issue 5
\pages 3--34
\mathnet{http://mi.mathnet.ru/izv449}
\crossref{https://doi.org/10.4213/im449}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2018738}
\zmath{https://zbmath.org/?q=an:1060.05096}
\elib{http://elibrary.ru/item.asp?id=13961127}
\transl
\jour Izv. Math.
\yr 2003
\vol 67
\issue 5
\pages 849--880
\crossref{https://doi.org/10.1070/IM2003v067n05ABEH000449}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000187798600001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-14544302129}


Linking options:
  • http://mi.mathnet.ru/eng/izv449
  • https://doi.org/10.4213/im449
  • http://mi.mathnet.ru/eng/izv/v67/i5/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. G. G. Ilyuta, “Interlacing zeros and divided differences”, Russian Math. Surveys, 59:5 (2004), 956–958  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. G. G. Ilyuta, “Sylvester subresultants, rational Cauchy approximations, Thiele's continued fractions and higher Bruhat orders”, Russian Math. Surveys, 60:2 (2005), 354–356  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:339
    Full text:121
    References:36
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019