RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2004, Volume 68, Issue 1, Pages 79–122 (Mi izv467)  

This article is cited in 5 scientific papers (total in 5 papers)

Approximation of the derivatives of finitely smooth functions belonging to non-isotropic classes

S. N. Kudryavtsev


Abstract: We find weak asymptotics of approximation characteristics related to the problem of recovering (reconstructing) the derivative from the function values at a given number of points, Stechkin's problem for the derivation operator, and the problem of describing asymptotics of diameters for non-isotropic Nikol'skii and Besov classes.

DOI: https://doi.org/10.4213/im467

Full text: PDF file (2904 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2004, 68:1, 77–123

Bibliographic databases:

UDC: 517.5
MSC: 46E35, 47F05, 47A58, 41A05, 41A10, 41A46, 41A63
Received: 06.02.2002

Citation: S. N. Kudryavtsev, “Approximation of the derivatives of finitely smooth functions belonging to non-isotropic classes”, Izv. RAN. Ser. Mat., 68:1 (2004), 79–122; Izv. Math., 68:1 (2004), 77–123

Citation in format AMSBIB
\Bibitem{Kud04}
\by S.~N.~Kudryavtsev
\paper Approximation of the derivatives of finitely smooth functions belonging to non-isotropic classes
\jour Izv. RAN. Ser. Mat.
\yr 2004
\vol 68
\issue 1
\pages 79--122
\mathnet{http://mi.mathnet.ru/izv467}
\crossref{https://doi.org/10.4213/im467}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2096938}
\zmath{https://zbmath.org/?q=an:1071.41030}
\transl
\jour Izv. Math.
\yr 2004
\vol 68
\issue 1
\pages 77--123
\crossref{https://doi.org/10.1070/IM2004v068n01ABEH000467}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000221332600003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746580716}


Linking options:
  • http://mi.mathnet.ru/eng/izv467
  • https://doi.org/10.4213/im467
  • http://mi.mathnet.ru/eng/izv/v68/i1/p79

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. N. Kudryavtsev, “Approximation and reconstruction of the derivatives of functions satisfying mixed Hölder conditions”, Izv. Math., 71:5 (2007), 895–938  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    2. Kudryavtsev S.N., “Generalized Haar series and their applications”, Anal Math, 37:2 (2011), 103–150  crossref  mathscinet  zmath  isi  scopus
    3. S. N. Kudryavtsev, “A Littlewood–Paley type theorem and a corollary”, Izv. Math., 77:6 (2013), 1155–1194  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    4. S. N. Kudryavtsev, “An analogue of the Littlewood–Paley theorem for orthoprojectors onto wavelet subspaces”, Izv. Math., 80:3 (2016), 557–601  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. S. N. Kudryavtsev, “Extension of functions in non-isotropic Nikolskii–Besov spaces and approximation of their derivatives”, Izv. Math., 82:5 (2018), 931–983  mathnet  crossref  crossref  adsnasa  isi  elib
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:271
    Full text:107
    References:40
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019