RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2004, Volume 68, Issue 2, Pages 23–38 (Mi izv473)  

This article is cited in 1 scientific paper (total in 1 paper)

A priori estimates near the boundary for the solutions of non-diagonal elliptic systems with strong non-linearity

A. A. Arkhipova

Saint-Petersburg State University

Abstract: We consider quasilinear elliptic non-diagonal systems of equations with strong non-linearity with respect to the gradient. We have already shown that the generalized solution of this problem is Hölder continuous in the neighbourhood of points of the domain at which the norm of the gradient of the solution is sufficiently small in the Morrey space $L^{2,n-2}$. We estimate the Hölder norm of the solution in the neighbourhood of such points in terms of its norm in the Sobolev space $W_2^1$. We obtain a similar result under the Dirichlet boundary condition for points situated in the neighbourhood of the boundary.

DOI: https://doi.org/10.4213/im473

Full text: PDF file (1081 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2004, 68:2, 243–258

Bibliographic databases:

UDC: 517.953
MSC: 35B65, 35J65, 35J55
Received: 25.09.2003

Citation: A. A. Arkhipova, “A priori estimates near the boundary for the solutions of non-diagonal elliptic systems with strong non-linearity”, Izv. RAN. Ser. Mat., 68:2 (2004), 23–38; Izv. Math., 68:2 (2004), 243–258

Citation in format AMSBIB
\Bibitem{Ark04}
\by A.~A.~Arkhipova
\paper A~priori estimates near the boundary for the solutions of non-diagonal elliptic systems with strong non-linearity
\jour Izv. RAN. Ser. Mat.
\yr 2004
\vol 68
\issue 2
\pages 23--38
\mathnet{http://mi.mathnet.ru/izv473}
\crossref{https://doi.org/10.4213/im473}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2057998}
\zmath{https://zbmath.org/?q=an:1073.35082}
\transl
\jour Izv. Math.
\yr 2004
\vol 68
\issue 2
\pages 243--258
\crossref{https://doi.org/10.1070/IM2004v068n02ABEH000473}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000222755000002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746543131}


Linking options:
  • http://mi.mathnet.ru/eng/izv473
  • https://doi.org/10.4213/im473
  • http://mi.mathnet.ru/eng/izv/v68/i2/p23

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. J. Math. Sci. (N. Y.), 132:3 (2006), 255–273  mathnet  crossref  mathscinet  zmath  elib
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:195
    Full text:70
    References:20
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019