|
This article is cited in 1 scientific paper (total in 1 paper)
“Newton polyhedra” of distributions
B. Ya. Kazarnovskii Scientific Technical Centre "Informregistr"
Abstract:
We consider systems of equations of the form $f_i(x)=0$, where the
$f_i(x)$ are the Fourier transforms of distributions with fixed compact supports, and show that the average density of roots of such systems is determined by the geometry of the convex hulls of the supports of the distributions as their product in the ring of convex bodies.
DOI:
https://doi.org/10.4213/im475
Full text:
PDF file (1755 kB)
References:
PDF file
HTML file
English version:
Izvestiya: Mathematics, 2004, 68:2, 273–289
Bibliographic databases:
UDC:
512.7+514.172
MSC: 52B20, 32A15 Received: 30.05.2003
Citation:
B. Ya. Kazarnovskii, ““Newton polyhedra” of distributions”, Izv. RAN. Ser. Mat., 68:2 (2004), 53–70; Izv. Math., 68:2 (2004), 273–289
Citation in format AMSBIB
\Bibitem{Kaz04}
\by B.~Ya.~Kazarnovskii
\paper ``Newton polyhedra'' of distributions
\jour Izv. RAN. Ser. Mat.
\yr 2004
\vol 68
\issue 2
\pages 53--70
\mathnet{http://mi.mathnet.ru/izv475}
\crossref{https://doi.org/10.4213/im475}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2058000}
\zmath{https://zbmath.org/?q=an:1069.30006}
\transl
\jour Izv. Math.
\yr 2004
\vol 68
\issue 2
\pages 273--289
\crossref{https://doi.org/10.1070/IM2004v068n02ABEH000475}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000222755000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746579820}
Linking options:
http://mi.mathnet.ru/eng/izv475https://doi.org/10.4213/im475 http://mi.mathnet.ru/eng/izv/v68/i2/p53
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Malajovich G., “On the Expected Number of Zeros of Nonlinear Equations”, Found. Comput. Math., 13:6 (2013), 867–884
|
Number of views: |
This page: | 335 | Full text: | 116 | References: | 41 | First page: | 2 |
|