|
This article is cited in 5 scientific papers (total in 5 papers)
Birationally superrigid cyclic triple spaces
I. A. Cheltsov Steklov Mathematical Institute, Russian Academy of Sciences
Abstract:
We prove the birational superrigidity and non-rationality of a cyclic triple covering of $\mathbb{P}^{2n}$ branched over a nodal hypersurface of degree $3n$ for $n\geqslant 2$. The result obtained solves the problem of birational superrigidity for smooth cyclic triple spaces. We also consider certain relevant problems.
DOI:
https://doi.org/10.4213/im516
Full text:
PDF file (5461 kB)
References:
PDF file
HTML file
English version:
Izvestiya: Mathematics, 2004, 68:6, 1229–1275
Bibliographic databases:
UDC:
512.76
MSC: 14E05, 14E08, 14E20, 14G05, 14J45 Received: 11.05.2004
Citation:
I. A. Cheltsov, “Birationally superrigid cyclic triple spaces”, Izv. RAN. Ser. Mat., 68:6 (2004), 169–220; Izv. Math., 68:6 (2004), 1229–1275
Citation in format AMSBIB
\Bibitem{Che04}
\by I.~A.~Cheltsov
\paper Birationally superrigid cyclic triple spaces
\jour Izv. RAN. Ser. Mat.
\yr 2004
\vol 68
\issue 6
\pages 169--220
\mathnet{http://mi.mathnet.ru/izv516}
\crossref{https://doi.org/10.4213/im516}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2108528}
\zmath{https://zbmath.org/?q=an:1075.14011}
\elib{http://elibrary.ru/item.asp?id=14473582}
\transl
\jour Izv. Math.
\yr 2004
\vol 68
\issue 6
\pages 1229--1275
\crossref{https://doi.org/10.1070/IM2004v068n06ABEH000516}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000227279000009}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33644963967}
Linking options:
http://mi.mathnet.ru/eng/izv516https://doi.org/10.4213/im516 http://mi.mathnet.ru/eng/izv/v68/i6/p169
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
I. A. Cheltsov, “Birationally rigid Fano varieties”, Russian Math. Surveys, 60:5 (2005), 875–965
-
I. A. Cheltsov, “Local inequalities and birational superrigidity of Fano varieties”, Izv. Math., 70:3 (2006), 605–639
-
Odaka Yu., Okada T., “Birational Superrigidity and Slope Stability of Fano Manifolds”, Math. Z., 275:3-4 (2013), 1109–1119
-
E. Johnstone, “Birationally Rigid Singular Double Quadrics and Double Cubics”, Math. Notes, 102:4 (2017), 508–515
-
Okada T., “Stable Rationality of Cyclic Covers of Projective Spaces”, Proc. Edinb. Math. Soc., 62:3 (2019), 667–682
|
Number of views: |
This page: | 469 | Full text: | 84 | References: | 50 | First page: | 2 |
|