RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2006, Volume 70, Issue 1, Pages 117–128 (Mi izv563)  

This article is cited in 6 scientific papers (total in 6 papers)

Periodic solutions of a non-linear wave equation with homogeneous boundary conditions

I. A. Rudakov

M. V. Lomonosov Moscow State University

Abstract: We prove the existence of time-periodic solutions of a non-linear wave equation with homogeneous boundary conditions. The non-linear term either has polynomial growth or satisfies a “non-resonance” condition.

DOI: https://doi.org/10.4213/im563

Full text: PDF file (457 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2006, 70:1, 109–120

Bibliographic databases:

UDC: 517.946
Received: 29.01.2004

Citation: I. A. Rudakov, “Periodic solutions of a non-linear wave equation with homogeneous boundary conditions”, Izv. RAN. Ser. Mat., 70:1 (2006), 117–128; Izv. Math., 70:1 (2006), 109–120

Citation in format AMSBIB
\Bibitem{Rud06}
\by I.~A.~Rudakov
\paper Periodic solutions of a non-linear wave equation with homogeneous boundary conditions
\jour Izv. RAN. Ser. Mat.
\yr 2006
\vol 70
\issue 1
\pages 117--128
\mathnet{http://mi.mathnet.ru/izv563}
\crossref{https://doi.org/10.4213/im563}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2212436}
\zmath{https://zbmath.org/?q=an:1112.35127}
\elib{http://elibrary.ru/item.asp?id=9251696}
\transl
\jour Izv. Math.
\yr 2006
\vol 70
\issue 1
\pages 109--120
\crossref{https://doi.org/10.1070/IM2006v170n01ABEH002305}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000237779300005}
\elib{http://elibrary.ru/item.asp?id=13525135}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33744815603}


Linking options:
  • http://mi.mathnet.ru/eng/izv563
  • https://doi.org/10.4213/im563
  • http://mi.mathnet.ru/eng/izv/v70/i1/p117

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. A. Rudakov, “Periodic solutions of a quasilinear wave equation with variable coefficients”, Sb. Math., 198:7 (2007), 993–1009  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. V. A. Kondrat'ev, I. A. Rudakov, “Periodic Solutions of a Quasilinear Wave Equation”, Math. Notes, 85:1 (2009), 34–50  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    3. I. A. Rudakov, “On time-periodic solutions of a quasilinear wave equation”, Proc. Steklov Inst. Math., 270 (2010), 222–229  mathnet  crossref  mathscinet  zmath  isi  elib
    4. Rudakov I.A., “Periodicheskie resheniya kvazilineinogo uravneniya kolebanii balki”, Vestn. Bryanskogo gos. un-ta, 2011, no. 4, 45–49  elib
    5. V. N. Pavlenko, T. A. Petrash, “Periodicheskie resheniya uravneniya kolebanii struny s granichnymi usloviyami Neimana i Dirikhle i razryvnoi nelineinostyu”, Tr. IMM UrO RAN, 18, no. 2, 2012, 199–204  mathnet  elib
    6. Rudakov I.A., “Periodic Solutions of the Quasilinear Beam Vibration Equation with Homogeneous Boundary Conditions”, Differ. Equ., 48:6 (2012), 820–831  mathnet  crossref  mathscinet  zmath  zmath  isi  elib  elib  scopus
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:255
    Full text:106
    References:27
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019