RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Bulletin de l'Académie des Sciences de Russie. VI série, 1921, Volume 15, Pages 281–302 (Mi izv5743)  

This article is cited in 7 scientific papers (total in 7 papers)

Une méthode de la solution du problème de développement des fonctions en séries de polynomes de Tchébychef indépendante de la théorie de fermeture. I

W. Stekloff (V. Steklov)


Full text: PDF file (1610 kB)

Bibliographic databases:
Language:

Citation: W. Stekloff (V. Steklov), “Une méthode de la solution du problème de développement des fonctions en séries de polynomes de Tchébychef indépendante de la théorie de fermeture. I”, Bulletin de l'Académie des Sciences de Russie. VI série, 15 (1921), 281–302

Citation in format AMSBIB
\Bibitem{Ste21}
\by W.~Stekloff (V.~Steklov)
\paper Une m\'ethode de la solution du probl\`eme de d\'eveloppement des fonctions en s\'eries de polynomes de Tch\'ebychef ind\'ependante de la th\'eorie de fermeture.~I
\jour Bulletin de l'Acad{\'e}mie des Sciences de Russie. VI s\'erie
\yr 1921
\vol 15
\pages 281--302
\mathnet{http://mi.mathnet.ru/izv5743}
\zmath{https://zbmath.org/?q=an:49.0295.01}


Linking options:
  • http://mi.mathnet.ru/eng/izv5743
  • http://mi.mathnet.ru/eng/izv/v15/p281

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. P. K. Suetin, “Fundamental properties of polynomials orthogonal on a contour”, Russian Math. Surveys, 21:2 (1966), 35–83  mathnet  crossref  mathscinet  zmath
    2. E. A. Rakhmanov, “On Steklov's conjecture in the theory of orthogonal polynomials”, Math. USSR-Sb., 36:4 (1980), 549–575  mathnet  crossref  mathscinet  zmath  isi
    3. E. A. Rakhmanov, “Estimates of the growth of orthogonal polynomials whose weight is bounded away from zero”, Math. USSR-Sb., 42:2 (1982), 237–263  mathnet  crossref  mathscinet  zmath
    4. M. M. Gekhtman, “On the asymptotic behavior of the normalized eigenfunctions of the Sturm-Liouville problem on a finite interval”, Math. USSR-Sb., 61:1 (1988), 185–199  mathnet  crossref  mathscinet  zmath
    5. M. U. Ambroladze, “On the possible rate of growth of polynomials orthogonal with a continuous positive weight”, Math. USSR-Sb., 72:2 (1992), 311–331  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    6. A. I. Aptekarev, S. A. Denisov, D. N. Tulyakov, “V.A. Steklov's problem of estimating the growth of orthogonal polynomials”, Proc. Steklov Inst. Math., 289 (2015), 72–95  mathnet  crossref  crossref  isi  elib
    7. S. A. Denisov, “The growth of polynomials orthogonal on the unit circle with respect to a weight $w$ that satisfies $w,w^{-1}\in L^\infty(\mathbb{T})$”, Sb. Math., 209:7 (2018), 985–1018  mathnet  crossref  crossref  adsnasa  isi  elib
  • Извѣстія Императорской Академіи Наукъ
    Number of views:
    This page:159
    Full text:47

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020