RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2006, Volume 70, Issue 4, Pages 91–134 (Mi izv585)  

This article is cited in 8 scientific papers (total in 8 papers)

Rigid isotopy classification of real three-dimensional cubics

V. A. Krasnov

P. G. Demidov Yaroslavl State University

Abstract: We prove that the space of non-singular real three-dimensional cubics has precisely nine connected components. We also study the space of real canonical curves of genus 4 and prove, in particular, that it consists of eight connected components.

DOI: https://doi.org/10.4213/im585

Full text: PDF file (679 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2006, 70:4, 731–768

Bibliographic databases:

UDC: 512.7
MSC: 14PXX, 14P25
Received: 07.06.2005

Citation: V. A. Krasnov, “Rigid isotopy classification of real three-dimensional cubics”, Izv. RAN. Ser. Mat., 70:4 (2006), 91–134; Izv. Math., 70:4 (2006), 731–768

Citation in format AMSBIB
\Bibitem{Kra06}
\by V.~A.~Krasnov
\paper Rigid isotopy classification of real three-dimensional cubics
\jour Izv. RAN. Ser. Mat.
\yr 2006
\vol 70
\issue 4
\pages 91--134
\mathnet{http://mi.mathnet.ru/izv585}
\crossref{https://doi.org/10.4213/im585}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2261172}
\zmath{https://zbmath.org/?q=an:05241944}
\elib{http://elibrary.ru/item.asp?id=9282139}
\transl
\jour Izv. Math.
\yr 2006
\vol 70
\issue 4
\pages 731--768
\crossref{https://doi.org/10.1070/IM2006v070n04ABEH002326}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000241664000005}
\elib{http://elibrary.ru/item.asp?id=13510641}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33750853597}


Linking options:
  • http://mi.mathnet.ru/eng/izv585
  • https://doi.org/10.4213/im585
  • http://mi.mathnet.ru/eng/izv/v70/i4/p91

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. A. Krasnov, “The topological classification of Fano surfaces of real three-dimensional cubics”, Izv. Math., 71:5 (2007), 863–894  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    2. Finashin S., Kharlamov V., “Deformation classes of real four-dimensional cubic hypersurfaces”, J. Algebraic Geom., 17:4 (2008), 677–707  crossref  mathscinet  zmath  isi  elib  scopus
    3. V. A. Krasnov, “Equivariant Topological Classification of the Fano Varieties of Real Four-Dimensional Cubics”, Math. Notes, 85:4 (2009), 574–583  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    4. V. A. Krasnov, “On the Fano Variety of a Class of Real Four-Dimensional Cubics”, Math. Notes, 85:5 (2009), 682–689  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    5. V. A. Krasnov, “Topological Classification of Real Three-Dimensional Cubics”, Math. Notes, 85:6 (2009), 841–847  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    6. Finashin S., Kharlamov V., “On the deformation chirality of real cubic fourfolds”, Compositio Math., 145:5 (2009), 1277–1304  crossref  mathscinet  zmath  isi  elib  scopus
    7. Finashin S., Kharlamov V., “Topology of real cubic fourfolds”, J. Topol., 3:1 (2010), 1–28  crossref  mathscinet  zmath  isi  elib  scopus
    8. Allcock D., Carlson J.A., Toledo D., “Hyperbolic geometry and moduli of real cubic surfaces”, Ann. Sci. Éc. Norm. Supér. (4), 43:1 (2010), 69–115  crossref  mathscinet  zmath  isi  scopus
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:354
    Full text:88
    References:47
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019