RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2012, Volume 76, Issue 2, Pages 151–160 (Mi izv5886)  

This article is cited in 4 scientific papers (total in 4 papers)

Factorization semigroups and irreducible components of the Hurwitz space. II

Vik. S. Kulikov

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: We continue the investigation started in [1]. Let $\mathrm{HUR}_{d,t}^{\mathcal S_d}(\mathbb P^1)$ be the Hurwitz space of coverings of degree $d$ of the projective line $\mathbb P^1$ with Galois group $\mathcal S_d$ and monodromy type $t$. The monodromy type is a set of local monodromy types, which are defined as conjugacy classes of permutations $\sigma$ in the symmetric group $\mathcal S_d$ acting on the set $I_d=\{1,…,d\}$. We prove that if the type $t$ contains sufficiently many local monodromies belonging to the conjugacy class $C$ of an odd permutation $\sigma$ which leaves $f_C\ge 2$ elements of $I_d$ fixed, then the Hurwitz space $\mathrm{HUR}_{d,t}^{\mathcal S_d}(\mathbb P^1)$ is irreducible.

Keywords: semigroup, factorizations of an element of a group, irreducible components of the Hurwitz space.

Funding Agency Grant Number
Russian Foundation for Basic Research 11-01-00185
Ministry of Education and Science of the Russian Federation НШ-4713.2010.1
11.G34.31.0023


DOI: https://doi.org/10.4213/im5886

Full text: PDF file (465 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2012, 76:2, 356–364

Bibliographic databases:

UDC: 512.53+512.544+512.772.5
MSC: 14H30, 20M50, 57M05
Received: 16.11.2010
Revised: 23.08.2011

Citation: Vik. S. Kulikov, “Factorization semigroups and irreducible components of the Hurwitz space. II”, Izv. RAN. Ser. Mat., 76:2 (2012), 151–160; Izv. Math., 76:2 (2012), 356–364

Citation in format AMSBIB
\Bibitem{Kul12}
\by Vik.~S.~Kulikov
\paper Factorization semigroups and irreducible components of the Hurwitz space.~II
\jour Izv. RAN. Ser. Mat.
\yr 2012
\vol 76
\issue 2
\pages 151--160
\mathnet{http://mi.mathnet.ru/izv5886}
\crossref{https://doi.org/10.4213/im5886}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2976281}
\zmath{https://zbmath.org/?q=an:1251.14018}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2012IzMat..76..356K}
\elib{http://elibrary.ru/item.asp?id=20358838}
\transl
\jour Izv. Math.
\yr 2012
\vol 76
\issue 2
\pages 356--364
\crossref{https://doi.org/10.1070/IM2012v076n02ABEH002586}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000303516900006}
\elib{http://elibrary.ru/item.asp?id=17984184}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84860540605}


Linking options:
  • http://mi.mathnet.ru/eng/izv5886
  • https://doi.org/10.4213/im5886
  • http://mi.mathnet.ru/eng/izv/v76/i2/p151

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. Vik. S. Kulikov, “Factorizations in finite groups”, Sb. Math., 204:2 (2013), 237–263  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. Vik. S. Kulikov, V. M. Kharlamov, “Covering semigroups”, Izv. Math., 77:3 (2013), 594–626  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    3. F. A. Bogomolov, Vik. S. Kulikov, “The ambiguity index of an equipped finite group”, Eur. J. Math., 1:2 (2015), 260–278  crossref  mathscinet  zmath  scopus
    4. Orevkov S.Yu., “Criterion of Hurwitz Equivalence For Quasipositive Factorizations of 3-Braids”, Dokl. Math., 92:1 (2015), 443–447  mathnet  crossref  mathscinet  zmath  isi  elib  scopus
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:327
    Full text:59
    References:25
    First page:16

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019