RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2007, Volume 71, Issue 1, Pages 17–54 (Mi izv599)  

This article is cited in 3 scientific papers (total in 3 papers)

The behaviour of solutions of elliptic inequalities that are non-linear with respect to the highest derivatives

A. A. Kon'kov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: This paper deals with non-negative solutions of the elliptic inequalities $\operatorname{div} A(x,Du)\ge F(x,u)$ in $\Omega$, where $A\colon\Omega\times\mathbb R^n\to\mathbb R^n$ and $F\colon\Omega\times[0,\infty)\to[0,\infty)$ are functions and $\Omega$ is an unbounded open subset of $\mathbb R^n$, $n\ge2$.

DOI: https://doi.org/10.4213/im599

Full text: PDF file (757 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2007, 71:1, 15–51

Bibliographic databases:

UDC: 517.9
MSC: 35J15, 35J25, 34A34, 34C10
Received: 06.10.2005

Citation: A. A. Kon'kov, “The behaviour of solutions of elliptic inequalities that are non-linear with respect to the highest derivatives”, Izv. RAN. Ser. Mat., 71:1 (2007), 17–54; Izv. Math., 71:1 (2007), 15–51

Citation in format AMSBIB
\Bibitem{Kon07}
\by A.~A.~Kon'kov
\paper The behaviour of solutions of elliptic inequalities that are non-linear with respect to the highest derivatives
\jour Izv. RAN. Ser. Mat.
\yr 2007
\vol 71
\issue 1
\pages 17--54
\mathnet{http://mi.mathnet.ru/izv599}
\crossref{https://doi.org/10.4213/im599}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2477272}
\zmath{https://zbmath.org/?q=an:1187.35297}
\elib{http://elibrary.ru/item.asp?id=9450955}
\transl
\jour Izv. Math.
\yr 2007
\vol 71
\issue 1
\pages 15--51
\crossref{https://doi.org/10.1070/IM2007v071n01ABEH002348}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000246660400002}
\elib{http://elibrary.ru/item.asp?id=13552802}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34249786249}


Linking options:
  • http://mi.mathnet.ru/eng/izv599
  • https://doi.org/10.4213/im599
  • http://mi.mathnet.ru/eng/izv/v71/i1/p17

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Kon'kov A.A., “On the properties of solutions of nonlinear elliptic inequalities containing terms with lower order derivatives”, Dokl. Math., 85:1 (2012), 51–54  crossref  mathscinet  zmath  isi  elib  scopus
    2. Kon'kov A.A., “Solutions of elliptic inequalities that vanish in a neighborhood of infinity”, Russ. J. Math. Phys., 19:1 (2012), 131–133  crossref  mathscinet  zmath  isi  scopus
    3. A. A. Kon'kov, “On comparison theorems for quasi-linear elliptic inequalities with a special account of the geometry of the domain”, Izv. Math., 78:4 (2014), 758–808  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:236
    Full text:100
    References:53
    First page:5

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019