Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 1996, Volume 60, Issue 1, Pages 3–36 (Mi izv60)  

This article is cited in 8 scientific papers (total in 8 papers)

Asymptotic analysis of problems on junctions of domains of different limit dimensions. A body pierced by a thin rod

I. I. Argatov, S. A. Nazarov


Abstract: We consider the junction problem on the union of two bodies: a thin cylinder $Q_\varepsilon$ and a massive body $\Omega(\varepsilon)$ with an opening into which this cylinder has been inserted. The equations on $Q_\varepsilon$ and $\Omega(\varepsilon)$ contain the operators $\mu\Delta$ and $\Delta$ (where $\mu =\mu (\varepsilon)$ is a large parameter and $\Delta$ is the Laplacian): Dirichlet conditions are imposed on the ends of $Q_\varepsilon$ and Neumann conditions on the remainder of the exterior boundary. We study the asymptotic behaviour of a solution $\{u_Q,u_\Omega\}$ as $\varepsilon\to+0$. The principal asymptotic formulae are as follows: $u_Q\sim w$ on $Q_\varepsilon$ and $u_\Omega\sim v$ on $\Omega(\varepsilon)$, where $v$ is a solution of the Neumann problem in $\Omega$ and the Dirac function is distributed along the interval $\Omega\setminus\Omega(0)$ with density $\gamma$. The functions $w$ and $\gamma$, depending on the axis variable of the cylinder, are found as solutions of a so-called resulting problem, in which a second-order differential equation and an integral equation (principal symbol of the operator $(2\pi)^{-1}\ln|\xi|$) are included. In the resulting problem the large parameter $\lvert\ln\varepsilon\rvert$ remains. Various methods of constructing its asymptotic solutions are discussed. The most interesting turns out to be the case $\mu(\varepsilon)=O(\varepsilon^{-2}\lvert\ln\varepsilon\rvert^{-1})$) (even the principal terms of the functions $w$ and $\gamma$ are not found separately). All the asymptotic formulae are justified; the remainders are estimated in the energy norm.

DOI: https://doi.org/10.4213/im60

Full text: PDF file (2812 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 1996, 60:1, 1–37

Bibliographic databases:

MSC: Primary 35J25, 35B40, 73C35; Secondary 35A35, 35C10
Received: 23.05.1994

Citation: I. I. Argatov, S. A. Nazarov, “Asymptotic analysis of problems on junctions of domains of different limit dimensions. A body pierced by a thin rod”, Izv. RAN. Ser. Mat., 60:1 (1996), 3–36; Izv. Math., 60:1 (1996), 1–37

Citation in format AMSBIB
\Bibitem{ArgNaz96}
\by I.~I.~Argatov, S.~A.~Nazarov
\paper Asymptotic analysis of problems on junctions of domains of different limit dimensions. A~body pierced by a~thin rod
\jour Izv. RAN. Ser. Mat.
\yr 1996
\vol 60
\issue 1
\pages 3--36
\mathnet{http://mi.mathnet.ru/izv60}
\crossref{https://doi.org/10.4213/im60}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1391116}
\zmath{https://zbmath.org/?q=an:0881.35017}
\transl
\jour Izv. Math.
\yr 1996
\vol 60
\issue 1
\pages 1--37
\crossref{https://doi.org/10.1070/IM1996v060n01ABEH000060}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1996VE15400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-21344463792}


Linking options:
  • http://mi.mathnet.ru/eng/izv60
  • https://doi.org/10.4213/im60
  • http://mi.mathnet.ru/eng/izv/v60/i1/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Aldoshina I.A., Nazarov S.A., “Asymptotically exact joining conditions at the junction of plates with very different characteristic”, Pmm Journal of Applied Mathematics and Mechanics, 62:2 (1998), 253–261  crossref  mathscinet  adsnasa  isi  scopus
    2. S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes”, Russian Math. Surveys, 54:5 (1999), 947–1014  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. V. G. Maz'ya, A. B. Movchan, “Dynamic singular perturbation problems for multi-structures”, Appl Stochastic Models Bus Ind, 16:4 (2000), 249  crossref  mathscinet  zmath  isi  elib
    4. S. A. Nazarov, “Weighted anisotropic Korn's inequality for a junction of a plate and a rod”, Sb. Math., 195:4 (2004), 553–583  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    5. S. A. Nazarov, J. Sokolowski, “The topological derivative of the Dirichlet integral under formation of a thin ligament”, Siberian Math. J., 45:2 (2004), 341–355  mathnet  crossref  mathscinet  zmath  isi  elib
    6. I. I. Argatov, “Asymptotics of the reduced logarithmic capacity of a narrow cylinder”, Math. Notes, 77:1 (2005), 15–25  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    7. Movchan A.B., “Multi-structures: asymptotic analysis and singular perturbation problems”, European Journal of Mechanics A-Solids, 25:4 (2006), 677–694  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    8. Andrianov I.V., Awrejcewicz J., Weichert D., “Load-Transfer from an Elastic Fibre to Isotropic Half-Space with Coating”, Modeling, Simulation and Control of Nonlinear Engineering Dynamical Systems - State-of-the-Art, Perspectives and Applications, 2009, 1–11  crossref  mathscinet  zmath  isi
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:405
    Full text:90
    References:69
    First page:3

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021