RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2009, Volume 73, Issue 1, Pages 79–120 (Mi izv601)  

This article is cited in 4 scientific papers (total in 4 papers)

Two-colour rotations of the unit circle

V. G. Zhuravlev

Vladimir State Pedagogical University

Abstract: We consider two-colour, or double, rotations $S_{(\alpha,\beta,\varepsilon)}(x)$ of the unit circle $C$ the colouring of which depends on a continuous parameter $\varepsilon\in C$ and each area of which is given its own rotation angle, $\alpha$ or $\beta$. We choose as a model the one-parameter family of two-colour rotations $S_\varepsilon(x)=S_{(2\tau,\tau,\varepsilon)}(x)$, where $\tau=(1+\sqrt{5} )/2$ is the golden ratio, which have rotation rank $d=2$. It is proved that the first-return map $S_\varepsilon|\mathrm{Att}_\varepsilon$ (the restriction of the rotation $S_\varepsilon(x)$ to its attractor $\mathrm{Att}_\varepsilon$) is isomorphic to the integral map $T_\varepsilon=T(S^{\pm1},d_\varepsilon)$ constructed from the simple rotation $S$ of the circle through the angle $\pm \tau$ and some piecewise-constant function $d_\varepsilon$. An exact formula is obtained for the function $\nu(\varepsilon)$ of frequency distribution of points of the orbits under the action of $S_\varepsilon$.

Keywords: two-colour (double) rotations, ITM-maps (interval translation maps), distribution of fractional parts, Fibonacci tilings.

DOI: https://doi.org/10.4213/im601

Full text: PDF file (1106 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2009, 73:1, 79–120

Bibliographic databases:

UDC: 514
MSC: 37E10, 37B10, 37E45, 11B85
Received: 10.10.2005
Revised: 23.10.2007

Citation: V. G. Zhuravlev, “Two-colour rotations of the unit circle”, Izv. RAN. Ser. Mat., 73:1 (2009), 79–120; Izv. Math., 73:1 (2009), 79–120

Citation in format AMSBIB
\Bibitem{Zhu09}
\by V.~G.~Zhuravlev
\paper Two-colour rotations of the unit circle
\jour Izv. RAN. Ser. Mat.
\yr 2009
\vol 73
\issue 1
\pages 79--120
\mathnet{http://mi.mathnet.ru/izv601}
\crossref{https://doi.org/10.4213/im601}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2503122}
\zmath{https://zbmath.org/?q=an:1187.37058}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2009IzMat..73...79Z}
\elib{http://elibrary.ru/item.asp?id=20358666}
\transl
\jour Izv. Math.
\yr 2009
\vol 73
\issue 1
\pages 79--120
\crossref{https://doi.org/10.1070/IM2009v073n01ABEH002439}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000264628800005}
\elib{http://elibrary.ru/item.asp?id=14847566}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65349083690}


Linking options:
  • http://mi.mathnet.ru/eng/izv601
  • https://doi.org/10.4213/im601
  • http://mi.mathnet.ru/eng/izv/v73/i1/p79

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. G. Zhuravlev, “The attraction domain for the attractor of a two-color circle rotation”, J. Math. Sci. (N. Y.), 150:3 (2008), 2056–2083  mathnet  crossref  elib  elib
    2. V. G. Zhuravlev, “Geometrizatsiya teoremy Gekke”, Chebyshevskii sb., 11:1 (2010), 126–144  mathnet  mathscinet
    3. A. V. Shutov, “Drobi Fareya i perestanovki, porozhdennye drobnymi dolyami $\{i\alpha\}$”, Chebyshevskii sb., 15:1 (2014), 195–203  mathnet
    4. V. G. Zhuravlev, “Bounded remainder sets”, J. Math. Sci. (N. Y.), 222:5 (2017), 585–640  mathnet  crossref  mathscinet
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:424
    Full text:92
    References:41
    First page:14

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019