RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2005, Volume 69, Issue 1, Pages 145–164 (Mi izv628)  

This article is cited in 3 scientific papers (total in 3 papers)

On the numerical equivalence of algebraic cycles on potentially simple Abelian schemes of prime relative dimension

S. G. Tankeev

Vladimir State University

Abstract: Let $\pi\colon X\to C$ be a potentially simple complex Abelian scheme of prime relative dimension over a smooth projective curve. We prove that numerical equivalence of algebraic cycles on $X$ coincides with homological equivalence.

DOI: https://doi.org/10.4213/im628

Full text: PDF file (1509 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2005, 69:1, 143–162

Bibliographic databases:

UDC: 512.6
MSC: 14C25, 14K15, 11G10
Received: 16.03.2004

Citation: S. G. Tankeev, “On the numerical equivalence of algebraic cycles on potentially simple Abelian schemes of prime relative dimension”, Izv. RAN. Ser. Mat., 69:1 (2005), 145–164; Izv. Math., 69:1 (2005), 143–162

Citation in format AMSBIB
\Bibitem{Tan05}
\by S.~G.~Tankeev
\paper On the numerical equivalence of algebraic cycles on potentially simple Abelian schemes of prime relative dimension
\jour Izv. RAN. Ser. Mat.
\yr 2005
\vol 69
\issue 1
\pages 145--164
\mathnet{http://mi.mathnet.ru/izv628}
\crossref{https://doi.org/10.4213/im628}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2128184}
\zmath{https://zbmath.org/?q=an:1075.14004}
\elib{http://elibrary.ru/item.asp?id=9148960}
\transl
\jour Izv. Math.
\yr 2005
\vol 69
\issue 1
\pages 143--162
\crossref{https://doi.org/10.1070/IM2005v069n01ABEH000525}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000228925000007}
\elib{http://elibrary.ru/item.asp?id=13837875}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645644284}


Linking options:
  • http://mi.mathnet.ru/eng/izv628
  • https://doi.org/10.4213/im628
  • http://mi.mathnet.ru/eng/izv/v69/i1/p145

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. G. Tankeev, “Monoidal transformations and conjectures on algebraic cycles”, Izv. Math., 71:3 (2007), 629–655  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    2. S. G. Tankeev, “On algebraic cycles on complex Abelian schemes over smooth projective curves”, Izv. Math., 72:4 (2008), 817–844  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    3. S. G. Tankeev, “On the standard conjecture of Lefschetz type for complex projective threefolds”, Izv. Math., 74:1 (2010), 167–187  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:484
    Full text:95
    References:41
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019