RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2005, Volume 69, Issue 2, Pages 145–204 (Mi izv637)  

This article is cited in 17 scientific papers (total in 17 papers)

Hyperelliptic and trigonal Fano threefolds

V. V. Przyjalkowski, I. A. Cheltsov, K. A. Shramov

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: We classify Fano 3-folds with canonical Gorenstein singularities whose anticanonical linear system has no base points but does not give an embedding, and we classify anticanonically embedded Fano 3-folds with canonical Gorenstein singularities which are not intersections of quadrics. We also study rationality questions for most of these varieties.

DOI: https://doi.org/10.4213/im637

Full text: PDF file (5064 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2005, 69:2, 365–421

Bibliographic databases:

UDC: 512.76
MSC: 14J45, 14J30, 14J17, 14E08, 14E05
Received: 01.07.2004

Citation: V. V. Przyjalkowski, I. A. Cheltsov, K. A. Shramov, “Hyperelliptic and trigonal Fano threefolds”, Izv. RAN. Ser. Mat., 69:2 (2005), 145–204; Izv. Math., 69:2 (2005), 365–421

Citation in format AMSBIB
\Bibitem{PrzCheShr05}
\by V.~V.~Przyjalkowski, I.~A.~Cheltsov, K.~A.~Shramov
\paper Hyperelliptic and trigonal Fano threefolds
\jour Izv. RAN. Ser. Mat.
\yr 2005
\vol 69
\issue 2
\pages 145--204
\mathnet{http://mi.mathnet.ru/izv637}
\crossref{https://doi.org/10.4213/im637}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2136260}
\zmath{https://zbmath.org/?q=an:1081.14059}
\elib{http://elibrary.ru/item.asp?id=9176280}
\transl
\jour Izv. Math.
\yr 2005
\vol 69
\issue 2
\pages 365--421
\crossref{https://doi.org/10.1070/IM2005v069n02ABEH000533}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000230436900005}
\elib{http://elibrary.ru/item.asp?id=14576915}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-29144525238}


Linking options:
  • http://mi.mathnet.ru/eng/izv637
  • https://doi.org/10.4213/im637
  • http://mi.mathnet.ru/eng/izv/v69/i2/p145

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Jahnke P., Peternell Th., Radloff I., “Threefolds with big and nef anticanonical bundles. I”, Math. Ann., 333:3 (2005), 569–631  crossref  mathscinet  zmath  isi  scopus
    2. K. A. Shramov, “On the rationality of non-singular threefolds with a pencil of Del Pezzo surfaces of degree 4”, Sb. Math., 197:1 (2006), 127–137  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    3. Yu. G. Prokhorov, “On Fano–Enriques threefolds”, Sb. Math., 198:4 (2007), 559–574  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    4. Cheltsov I., “Nonrational del Pezzo fibrations”, Adv. Geom., 8:3 (2008), 441–450  crossref  mathscinet  zmath  isi  scopus
    5. I. V. Karzhemanov, “On Fano threefolds with canonical Gorenstein singularities”, Sb. Math., 200:8 (2009), 1215–1246  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. Priska Jahnke, Thomas Peternell, Ivo Radloff, “Threefolds with big and nef anticanonical bundles II”, centr.eur.j.math, 2011  crossref  mathscinet  isi  scopus
    7. Cynk S., Rams S., “Defect via differential forms with logarithmic poles”, Math Nachr, 284:17–18 (2011), 2148–2158  crossref  mathscinet  zmath  isi  elib  scopus
    8. Karzhemanov I., “On some Fano-Enriques threefolds”, Adv Geom, 11:1 (2011), 117–129  crossref  mathscinet  zmath  isi  scopus
    9. Prokhorov Yu., “Simple Finite Subgroups of the Cremona Group of Rank 3”, J. Algebr. Geom., 21:3 (2012), 563–600  crossref  mathscinet  zmath  isi  elib  scopus
    10. Yu. G. Prokhorov, “On birational involutions of $\mathbb P^3$”, Izv. Math., 77:3 (2013), 627–648  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    11. Yu. G. Prokhorov, “On $G$-Fano threefolds”, Izv. Math., 79:4 (2015), 795–808  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    12. V. V. Przyjalkowski, “Calabi-Yau compactifications of toric Landau-Ginzburg models for smooth Fano threefolds”, Sb. Math., 208:7 (2017), 992–1013  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    13. Yuri Prokhorov, Constantin Shramov, “Jordan constant for Cremona group of rank $3$”, Mosc. Math. J., 17:3 (2017), 457–509  mathnet  mathscinet
    14. Debarre O. Kuznetsov A., “Gushel-Mukai Varieties: Classification and Birationalities”, Algebraic Geom., 5:1 (2018), 15–76  crossref  mathscinet  isi  scopus
    15. Prokhorov Yu. Shramov C., “P-Subgroups in the Space Cremona Group”, Math. Nachr., 291:8-9 (2018), 1374–1389  crossref  mathscinet  zmath  isi  scopus
    16. Yu. G. Prokhorov, “The rationality problem for conic bundles”, Russian Math. Surveys, 73:3 (2018), 375–456  mathnet  crossref  crossref  adsnasa  isi  elib
    17. V. V. Przyjalkowski, “Toric Landau–Ginzburg models”, Russian Math. Surveys, 73:6 (2018), 1033–1118  mathnet  crossref  crossref  adsnasa  isi  elib
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:591
    Full text:144
    References:56
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019