RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2005, Volume 69, Issue 4, Pages 19–58 (Mi izv646)  

This article is cited in 3 scientific papers (total in 3 papers)

On symplectic coverings of the projective plane

G.-M. Greuela, Vik. S. Kulikovb

a Technical University of Kaiserslautern
b Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: We prove that a resolution of singularities of any finite covering of the projective complex plane branched along a Hurwitz curve $\overline H$, and possibly along the line “at infinity”, can be embedded as a symplectic submanifold in some projective algebraic manifold equipped with an integer Kähler symplectic form. (If $\overline H$ has negative nodes, then the covering is assumed to be non-singular over them.) For cyclic coverings, we can realize these embeddings in a rational complex 3-fold. Properties of the Alexander polynomial of $\overline H$ are investigated and applied to the calculation of the first Betti number $b_1(\overline X_n)$, where $\overline X_n$ is a resolution of singularities of an $n$-sheeted cyclic covering of $\mathbb C\mathbb P^2$ branched along $\overline H$, and possibly along the line “at infinity”. We prove that $b_1(\overline X_n)$ is even if $\overline H$ is an irreducible Hurwitz curve but, in contrast to the algebraic case, $b_1(\overline X_n)$ may take any non-negative value in the case when $\overline H$ consists of several components.

DOI: https://doi.org/10.4213/im646

Full text: PDF file (3696 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2005, 69:4, 667–701

Bibliographic databases:

UDC: 514.756.4
MSC: 14F35, 57R17, 14H20
Received: 23.11.2004

Citation: G.-M. Greuel, Vik. S. Kulikov, “On symplectic coverings of the projective plane”, Izv. RAN. Ser. Mat., 69:4 (2005), 19–58; Izv. Math., 69:4 (2005), 667–701

Citation in format AMSBIB
\Bibitem{GreKul05}
\by G.-M.~Greuel, Vik.~S.~Kulikov
\paper On symplectic coverings of the projective plane
\jour Izv. RAN. Ser. Mat.
\yr 2005
\vol 69
\issue 4
\pages 19--58
\mathnet{http://mi.mathnet.ru/izv646}
\crossref{https://doi.org/10.4213/im646}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2170701}
\zmath{https://zbmath.org/?q=an:1093.14023}
\elib{http://elibrary.ru/item.asp?id=9195222}
\transl
\jour Izv. Math.
\yr 2005
\vol 69
\issue 4
\pages 667--701
\crossref{https://doi.org/10.1070/IM2005v069n04ABEH001651}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000233210000002}
\elib{http://elibrary.ru/item.asp?id=14612921}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645533438}


Linking options:
  • http://mi.mathnet.ru/eng/izv646
  • https://doi.org/10.4213/im646
  • http://mi.mathnet.ru/eng/izv/v69/i4/p19

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Vik. S. Kulikov, “Alexander polynomials of Hurwitz curves”, Izv. Math., 70:1 (2006), 69–86  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    2. Vik. S. Kulikov, “Hurwitz curves”, Russian Math. Surveys, 62:6 (2007), 1043–1119  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    3. Vik. S. Kulikov, “Alexander modules of irreducible $C$-groups”, Izv. Math., 72:2 (2008), 305–344  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:386
    Full text:102
    References:75
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019