|
This article is cited in 14 scientific papers (total in 14 papers)
Coincidence points of maps of $\mathbb Z_p^n$-spaces
A. Yu. Volovikov
Abstract:
We study the set of coincidence points of single-valued and multivalued maps from
$\mathbb Z_p^n$-spaces to polyhedra and compact spaces and estimate the dimension of this set. We prove the Cohen–Lusk conjecture for maps to Euclidean spaces provided that the number of coincidences is different from 3.
DOI:
https://doi.org/10.4213/im655
Full text:
PDF file (5733 kB)
References:
PDF file
HTML file
English version:
Izvestiya: Mathematics, 2005, 69:5, 913–962
Bibliographic databases:
MSC: 55M20, 55M35, 54H25, 58C30, 54C60 Received: 25.12.2003
Citation:
A. Yu. Volovikov, “Coincidence points of maps of $\mathbb Z_p^n$-spaces”, Izv. RAN. Ser. Mat., 69:5 (2005), 53–106; Izv. Math., 69:5 (2005), 913–962
Citation in format AMSBIB
\Bibitem{Vol05}
\by A.~Yu.~Volovikov
\paper Coincidence points of maps of $\mathbb Z_p^n$-spaces
\jour Izv. RAN. Ser. Mat.
\yr 2005
\vol 69
\issue 5
\pages 53--106
\mathnet{http://mi.mathnet.ru/izv655}
\crossref{https://doi.org/10.4213/im655}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2179415}
\zmath{https://zbmath.org/?q=an:1105.55001}
\elib{https://elibrary.ru/item.asp?id=9182089}
\transl
\jour Izv. Math.
\yr 2005
\vol 69
\issue 5
\pages 913--962
\crossref{https://doi.org/10.1070/IM2005v069n05ABEH002282}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000234901500002}
\elib{https://elibrary.ru/item.asp?id=14603760}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645472248}
Linking options:
http://mi.mathnet.ru/eng/izv655https://doi.org/10.4213/im655 http://mi.mathnet.ru/eng/izv/v69/i5/p53
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. Yu. Volovikov, “The genus of $G$-spaces and topological lower bounds for chromatic numbers of hypergraphs”, J. Math. Sci., 144:5 (2007), 4387–4397
-
A. Yu. Volovikov, “On the Cohen–Lusk theorem”, J. Math. Sci., 159:6 (2009), 790–793
-
R. N. Karasev, “Rod i kategoriya Lyusternika–Shnirelmana proobrazov”, Model. i analiz inform. sistem, 14:4 (2007), 31–35
-
R. N. Karasev, “Topological methods in combinatorial geometry”, Russian Math. Surveys, 63:6 (2008), 1031–1078
-
Karasev R.N., “The genus and the category of configuration spaces”, Topology Appl., 156:14 (2009), 2406–2415
-
de Mattos D., dos Santos E.L., “On nonsymmetric theorems for $(H,G)$-coincidences”, Topol. Methods Nonlinear Anal., 33:1 (2009), 105–119
-
Karasev R.N., “Equipartition of a Measure by $(Z_p)^k$-Invariant Fans”, Discrete Comput. Geom., 43:2 (2010), 477–481
-
Karasev R.N., Volovikov A.Yu., “Knaster's problem for almost $(Z_p)^k$-orbits”, Topology Appl., 157:5 (2010), 941–945
-
Roman Karasev, Alexey Volovikov, “Configuration-like spaces and coincidences of maps on orbits”, Algebr. Geom. Topol, 11:2 (2011), 1033
-
dos Santos E.L., Coelho Francielle R. de C., “Coincidence Theorems for Maps of Free Z(P)-Spaces”, Topology Appl., 159:8 (2012), 2146–2151
-
Denise de Mattos, P.L.uiz Pergher, Edivaldo dos Santos, “Borsuk–Ulam theorems and their parametrized versions for spaces of type (a,b)”, Algebr. Geom. Topol, 13:5 (2013), 2827
-
Coelho Francielle R. de C., dos Santos E.L., “( H , G )-coincidence theorems for free G -spaces”, Topology Appl., 206 (2016), 158–165
-
Passer B., “Free Actions on $C^*$-Algebra Suspensions and Joins By Finite Cyclic Groups”, Indiana Univ. Math. J., 67:1 (2018), 187–203
-
T. N. Fomenko, “Fixed points and coincidences of families of mappings between
ordered sets and some metrical consequences”, Izv. Math., 83:1 (2019), 151–172
|
Number of views: |
This page: | 467 | Full text: | 165 | References: | 61 | First page: | 1 |
|