|
This article is cited in 2 scientific papers (total in 2 papers)
Distribution of the points of a design on the sphere
V. A. Yudin Moscow Power Engineering Institute (Technical University)
Abstract:
We determine the size of spherical caps with centres at the points of a design that cover the whole sphere in Euclidean space with a given multiplicity. By projecting $q$-designs on one-dimensional subspaces, we obtain the nodes of a Chebyshev-type quadrature formula of the same precision $q$. For large values of $q$ we establish that the points of a minimal
$q$-design are uniformly distributed on the sphere. We construct a weighted cubature formula on the sphere with the minimum number of nodes.
DOI:
https://doi.org/10.4213/im661
Full text:
PDF file (1416 kB)
References:
PDF file
HTML file
English version:
Izvestiya: Mathematics, 2005, 69:5, 1061–1079
Bibliographic databases:
UDC:
517.5
MSC: 05B30, 65D32, 05B40, 05E35, 33C45 Received: 27.11.2003
Citation:
V. A. Yudin, “Distribution of the points of a design on the sphere”, Izv. RAN. Ser. Mat., 69:5 (2005), 205–224; Izv. Math., 69:5 (2005), 1061–1079
Citation in format AMSBIB
\Bibitem{Yud05}
\by V.~A.~Yudin
\paper Distribution of the points of a~design on the sphere
\jour Izv. RAN. Ser. Mat.
\yr 2005
\vol 69
\issue 5
\pages 205--224
\mathnet{http://mi.mathnet.ru/izv661}
\crossref{https://doi.org/10.4213/im661}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2179421}
\zmath{https://zbmath.org/?q=an:1106.05020}
\elib{https://elibrary.ru/item.asp?id=9182095}
\transl
\jour Izv. Math.
\yr 2005
\vol 69
\issue 5
\pages 1061--1079
\crossref{https://doi.org/10.1070/IM2005v069n05ABEH002288}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000234901500008}
\elib{https://elibrary.ru/item.asp?id=13690254}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645465558}
Linking options:
http://mi.mathnet.ru/eng/izv661https://doi.org/10.4213/im661 http://mi.mathnet.ru/eng/izv/v69/i5/p205
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Bannai Eiichi, Bannai Etsuko, “A survey on spherical designs and algebraic combinatorics on spheres”, European J. Combin., 30:6 (2009), 1392–1425
-
A. R. Alimov, I. G. Tsar'kov, “Chebyshev centres, Jung constants, and their applications”, Russian Math. Surveys, 74:5 (2019), 775–849
|
Number of views: |
This page: | 412 | Full text: | 188 | References: | 51 | First page: | 2 |
|