|
This article is cited in 3 scientific papers (total in 4 papers)
On a class of coedge regular graphs
A. A. Makhnev, D. V. Paduchikh Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Abstract:
We study graphs in which $\lambda(a,b)=\lambda_1,\lambda_2$ for every edge $\{a,b\}$ and all $\mu$-subgraphs are 2-cocliques. We give a description of connected edge-regular graphs for $k\geqslant(b_1^2+3b_1-4)/2$. In particular, the following examples confirm that the inequality $k>b_1(b_1+3)/2$ is a sharp bound for strong regularity: the $n$-gon, the icosahedron graph, the graph in $\operatorname{MP}(6)$ and the distance-regular graph of diameter 4 with intersection massive $\{x,x-1,4,1;1,2,x-1,x\}$, which is an antipodal 3-covering of the strongly regular graph with parameters $((x+2)(x+3)/6,x,0,6)$.
DOI:
https://doi.org/10.4213/im667
Full text:
PDF file (2135 kB)
References:
PDF file
HTML file
English version:
Izvestiya: Mathematics, 2005, 69:6, 1169–1187
Bibliographic databases:
UDC:
519.14
MSC: 05C75, 05E30 Received: 25.05.2004
Citation:
A. A. Makhnev, D. V. Paduchikh, “On a class of coedge regular graphs”, Izv. RAN. Ser. Mat., 69:6 (2005), 95–114; Izv. Math., 69:6 (2005), 1169–1187
Citation in format AMSBIB
\Bibitem{MakPad05}
\by A.~A.~Makhnev, D.~V.~Paduchikh
\paper On a~class of coedge regular graphs
\jour Izv. RAN. Ser. Mat.
\yr 2005
\vol 69
\issue 6
\pages 95--114
\mathnet{http://mi.mathnet.ru/izv667}
\crossref{https://doi.org/10.4213/im667}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2190089}
\zmath{https://zbmath.org/?q=an:1104.05069}
\elib{http://elibrary.ru/item.asp?id=9195234}
\transl
\jour Izv. Math.
\yr 2005
\vol 69
\issue 6
\pages 1169--1187
\crossref{https://doi.org/10.1070/IM2005v069n06ABEH002294}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000235812000005}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645452271}
Linking options:
http://mi.mathnet.ru/eng/izv667https://doi.org/10.4213/im667 http://mi.mathnet.ru/eng/izv/v69/i6/p95
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Konstantin S. Efimov, Aleksandr A. Makhnev, “Vpolne regulyarnye grafy s $b_1=6$”, Zhurn. SFU. Ser. Matem. i fiz., 2:1 (2009), 63–77
-
Makhnev A.A., Paduchikh D.V., “On graphs in which each $\mu$-subgraph is a pentagon”, Dokl. Math., 81:2 (2010), 251–254
-
V. V. Kabanov, A. V. Mityanina, “Strictly Deza line graphs”, Proc. Steklov Inst. Math. (Suppl.), 285, suppl. 1 (2014), S78–S90
-
“Makhnev Aleksandr Alekseevich (on his 60th birthday)”, Proc. Steklov Inst. Math. (Suppl.), 285, suppl. 1 (2014), 1–11
|
Number of views: |
This page: | 298 | Full text: | 85 | References: | 34 | First page: | 1 |
|