RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2005, Volume 69, Issue 6, Pages 211–218 (Mi izv673)  

This article is cited in 5 scientific papers (total in 5 papers)

Dynamical systems in unramified or totally ramified extensions of a $\mathfrak p$-adic field

P.-A. Svensson

Växjö University

Abstract: We use local field theory to study a special class of discrete dynamical systems, where the function being iterated is a polynomial whose coefficients belong to the ring of integers in a $\mathfrak p$-adic field.

DOI: https://doi.org/10.4213/im673

Full text: PDF file (768 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2005, 69:6, 1279–1287

Bibliographic databases:

UDC: 511.23+517.938
MSC: 37C99, 11S05, 46S10
Received: 17.12.2003

Citation: P. Svensson, “Dynamical systems in unramified or totally ramified extensions of a $\mathfrak p$-adic field”, Izv. RAN. Ser. Mat., 69:6 (2005), 211–218; Izv. Math., 69:6 (2005), 1279–1287

Citation in format AMSBIB
\Bibitem{Sve05}
\by P.~Svensson
\paper Dynamical systems in unramified or totally ramified extensions of a $\mathfrak p$-adic field
\jour Izv. RAN. Ser. Mat.
\yr 2005
\vol 69
\issue 6
\pages 211--218
\mathnet{http://mi.mathnet.ru/izv673}
\crossref{https://doi.org/10.4213/im673}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2190095}
\zmath{https://zbmath.org/?q=an:1171.37311}
\elib{http://elibrary.ru/item.asp?id=9195240}
\transl
\jour Izv. Math.
\yr 2005
\vol 69
\issue 6
\pages 1279--1287
\crossref{https://doi.org/10.1070/IM2005v069n06ABEH002299}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000235812000011}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645459267}


Linking options:
  • http://mi.mathnet.ru/eng/izv673
  • https://doi.org/10.4213/im673
  • http://mi.mathnet.ru/eng/izv/v69/i6/p211

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. Yu. Khrennikov, P. Svensson, “Attracting fixed points of polynomial dynamical systems in fields of $p$-adic numbers”, Izv. Math., 71:4 (2007), 753–764  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. Proc. Steklov Inst. Math., 265 (2009), 235–241  mathnet  crossref  mathscinet  zmath  isi  elib
    3. Lindahl K.-O., “Linearization in ultrametric dynamics in fields of characteristic zero — Equal characteristic case”, p-Adic Numbers Ultrametric Anal. Appl., 1:4 (2009), 307–316  crossref  mathscinet  zmath
    4. Lindahl K.-O., Zieve M., “On hyperbolic fixed points in ultrametric dynamics”, p-Adic Numbers Ultrametric Anal. Appl., 2:3 (2010), 232–240  crossref  mathscinet  zmath
    5. Svensson P.-A., “Criteria for non-repelling fixed points”, Advances in $p$-adic and non-Archimedean analysis, Contemp. Math., 508, Amer. Math. Soc., Providence, RI, 2010, 239–252  crossref  mathscinet  zmath  isi
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:201
    Full text:88
    References:29
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019