Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2006, Volume 70, Issue 3, Pages 167–184 (Mi izv676)  

This article is cited in 3 scientific papers (total in 3 papers)

Representation of integers by isotropic ternary quadratic forms

U. M. Pachev

Kabardino-Balkar State University

Abstract: The discrete ergodic method is used to find a complete solution of the problem of the asymptotic behaviour of the number of representations of integers by an arbitrary integral isotropic ternary quadratic form both over regions on the corresponding surface and over the residue classes of a given modulus.

DOI: https://doi.org/10.4213/im676

Full text: PDF file (525 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2006, 70:3, 587–604

Bibliographic databases:

UDC: 511.512
MSC: 11E8, 11E12, 11E16, 11E20, 11D80, 11D85, 11D99, 11H55, 11K99, 11P05, 11P21, 11R52, 37A45
Received: 19.04.2005

Citation: U. M. Pachev, “Representation of integers by isotropic ternary quadratic forms”, Izv. RAN. Ser. Mat., 70:3 (2006), 167–184; Izv. Math., 70:3 (2006), 587–604

Citation in format AMSBIB
\Bibitem{Pac06}
\by U.~M.~Pachev
\paper Representation of integers by isotropic ternary quadratic forms
\jour Izv. RAN. Ser. Mat.
\yr 2006
\vol 70
\issue 3
\pages 167--184
\mathnet{http://mi.mathnet.ru/izv676}
\crossref{https://doi.org/10.4213/im676}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2238174}
\zmath{https://zbmath.org/?q=an:1175.11020}
\elib{https://elibrary.ru/item.asp?id=9226824}
\transl
\jour Izv. Math.
\yr 2006
\vol 70
\issue 3
\pages 587--604
\crossref{https://doi.org/10.1070/IM2006v070n03ABEH002320}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000241056000004}
\elib{https://elibrary.ru/item.asp?id=13532723}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33749580254}


Linking options:
  • http://mi.mathnet.ru/eng/izv676
  • https://doi.org/10.4213/im676
  • http://mi.mathnet.ru/eng/izv/v70/i3/p167

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. U. M. Pachev, “Obzor issledovanii po diskretnomu ergodicheskomu metodu v teorii chisel”, Chebyshevskii sb., 11:1 (2010), 217–233  mathnet  mathscinet
    2. U. M. Pachev, “O chisle primitivnykh neassotsiirovannykh matrits vtorogo poryadka opredelitelya $n$, delyaschikhsya na zadannuyu matritsu”, Vladikavk. matem. zhurn., 17:2 (2015), 62–67  mathnet
    3. U. M. Pachev, R. A. Dokhov, “Singular Functions in the Problem of the Weighted Number of Integer Points on Multidimensional Hyperboloids of Special Form”, Math. Notes, 105:2 (2019), 265–279  mathnet  crossref  crossref  mathscinet  isi  elib
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:311
    Full text:250
    References:46
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021