|
This article is cited in 3 scientific papers (total in 3 papers)
Homological dimensions and Van den Bergh isomorphisms for nuclear Fréchet algebras
A. Yu. Pirkovskii National Research University "Higher School of Economics"
Abstract:
We prove the equation $\operatorname{w{.}dg} A=\operatorname{w{.}db} A$
for every nuclear Fréchet–Arens–Michael algebra $A$ of finite weak
bidimension, where $\operatorname{w{.}dg} A$ is the weak global dimension
and $\operatorname{w{.}db} A$ the weak bidimension of $A$. Assuming
that $A$ has a projective bimodule resolution of finite type,
we establish the estimate $\operatorname{db}A\le\operatorname{dg}A+1$,
where $\operatorname{dg} A$ is the global dimension and
$\operatorname{db} A$ the bidimension of $A$. We also prove that
$\operatorname{dg}A=\operatorname{db}A=\operatorname{w{.}dg}A=
\operatorname{w{.}db} A=n$ for all nuclear Fréchet–Arens–Michael algebras
satisfying the Van den Bergh conditions $\operatorname{VdB}(n)$.
As an application, we calculate the homological dimensions
of smooth and complex-analytic quantum tori.
Keywords:
nuclear Fréchet algebra, global dimension, bidimension, Van den Bergh isomorphisms, Hochschild homology.
DOI:
https://doi.org/10.4213/im6792
Full text:
PDF file (1074 kB)
References:
PDF file
HTML file
English version:
Izvestiya: Mathematics, 2012, 76:4, 702–759
Bibliographic databases:
UDC:
517.986.2+512.664.2
MSC: 46M18, 46A04, 46H05, 18G20 Received: 19.01.2011 Revised: 20.04.2011
Citation:
A. Yu. Pirkovskii, “Homological dimensions and Van den Bergh isomorphisms for nuclear Fréchet algebras”, Izv. RAN. Ser. Mat., 76:4 (2012), 65–124; Izv. Math., 76:4 (2012), 702–759
Citation in format AMSBIB
\Bibitem{Pir12}
\by A.~Yu.~Pirkovskii
\paper Homological dimensions and Van den Bergh isomorphisms for nuclear Fr\'echet algebras
\jour Izv. RAN. Ser. Mat.
\yr 2012
\vol 76
\issue 4
\pages 65--124
\mathnet{http://mi.mathnet.ru/izv6792}
\crossref{https://doi.org/10.4213/im6792}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3013272}
\zmath{https://zbmath.org/?q=an:06101811}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2012IzMat..76..702P}
\elib{https://elibrary.ru/item.asp?id=20425219}
\transl
\jour Izv. Math.
\yr 2012
\vol 76
\issue 4
\pages 702--759
\crossref{https://doi.org/10.1070/IM2012v076n04ABEH002603}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000308069200005}
\elib{https://elibrary.ru/item.asp?id=20496096}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84865221673}
Linking options:
http://mi.mathnet.ru/eng/izv6792https://doi.org/10.4213/im6792 http://mi.mathnet.ru/eng/izv/v76/i4/p65
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. Yu. Pirkovskii, “Homological dimensions of modules of holomorphic functions on submanifolds of Stein manifolds”, J. Funct. Anal., 266:12 (2014), 6663–6683
-
Pirkovskii A.Yu., “Holomorphically Finitely Generated Algebras”, J. Noncommutative Geom., 9:1 (2015), 215–264
-
St. Petersburg Math. J., 31:4 (2020), 607–656
|
Number of views: |
This page: | 400 | Full text: | 114 | References: | 52 | First page: | 26 |
|