RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2007, Volume 71, Issue 2, Pages 173–222 (Mi izv682)  

This article is cited in 2 scientific papers (total in 2 papers)

Resolution of corank 1 singularities in the image of a stable smooth map to a space of higher dimension

V. D. Sedykh

Gubkin Russian State University of Oil and Gas

Abstract: We consider stable smooth maps from closed smooth manifolds to smooth manifolds of higher dimension. For maps with corank 1 singularities, we find universal linear relations between the Euler characteristics of the manifolds of singularities in their images. The calculations are based on resolving the singularities by a construction that generalizes the iteration principle from algebraic geometry.

DOI: https://doi.org/10.4213/im682

Full text: PDF file (947 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2007, 71:2, 391–437

Bibliographic databases:

UDC: 515.16
MSC: 58K05, 32S20, 58K65
Received: 25.03.2004

Citation: V. D. Sedykh, “Resolution of corank 1 singularities in the image of a stable smooth map to a space of higher dimension”, Izv. RAN. Ser. Mat., 71:2 (2007), 173–222; Izv. Math., 71:2 (2007), 391–437

Citation in format AMSBIB
\Bibitem{Sed07}
\by V.~D.~Sedykh
\paper Resolution of corank 1 singularities in the image of a stable smooth map to a space of higher dimension
\jour Izv. RAN. Ser. Mat.
\yr 2007
\vol 71
\issue 2
\pages 173--222
\mathnet{http://mi.mathnet.ru/izv682}
\crossref{https://doi.org/10.4213/im682}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2316986}
\zmath{https://zbmath.org/?q=an:1147.58039}
\elib{http://elibrary.ru/item.asp?id=9547688}
\transl
\jour Izv. Math.
\yr 2007
\vol 71
\issue 2
\pages 391--437
\crossref{https://doi.org/10.1070/IM2007v071n02ABEH002361}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000247427500006}
\elib{http://elibrary.ru/item.asp?id=13550782}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34347407885}


Linking options:
  • http://mi.mathnet.ru/eng/izv682
  • https://doi.org/10.4213/im682
  • http://mi.mathnet.ru/eng/izv/v71/i2/p173

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. D. Sedykh, “On the Coexistence of Corank 1 Multisingularities of a Stable Smooth Mapping of Equidimensional Manifolds”, Proc. Steklov Inst. Math., 258 (2007), 194–217  mathnet  crossref  mathscinet  zmath  elib  elib
    2. Ohmoto T., “Singularities of Maps and Characteristic Classes”, School on Real and Complex Singularities in Sao Carlos, 2012, Advanced Studies in Pure Mathematics, 68, eds. AraujoDosSantos R., Perez V., Nishimura T., Saeki O., Math Soc Japan, 2016, 191–265  mathscinet  zmath  isi
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:271
    Full text:97
    References:40
    First page:7

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019