|
This article is cited in 4 scientific papers (total in 4 papers)
Estimates for a uniform modulus of continuity of functions from symmetric spaces
E. I. Berezhnoi Yaroslavl State University
Abstract:
We prove a multidimensional “correctability” theorem of the Oskolkov type for a function given in $\mathbb R^n$ whereby a sharp quantitative estimate for the uniform modulus of continuity of a function on “large” sets is given if an estimate of the modulus of continuity of this function in a symmetric space is known. We show that an estimate of a uniform modulus of continuity depends only on the eigenfunction of the symmetric space.
DOI:
https://doi.org/10.4213/im69
Full text:
PDF file (1281 kB)
References:
PDF file
HTML file
English version:
Izvestiya: Mathematics, 1996, 60:2, 231–248
Bibliographic databases:
UDC:
517.5
MSC: 26A15, 46E30 Received: 14.04.1992
Citation:
E. I. Berezhnoi, “Estimates for a uniform modulus of continuity of functions from symmetric spaces”, Izv. RAN. Ser. Mat., 60:2 (1996), 3–20; Izv. Math., 60:2 (1996), 231–248
Citation in format AMSBIB
\Bibitem{Ber96}
\by E.~I.~Berezhnoi
\paper Estimates for a~uniform modulus of continuity of functions from symmetric spaces
\jour Izv. RAN. Ser. Mat.
\yr 1996
\vol 60
\issue 2
\pages 3--20
\mathnet{http://mi.mathnet.ru/izv69}
\crossref{https://doi.org/10.4213/im69}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1399416}
\zmath{https://zbmath.org/?q=an:0906.26005}
\transl
\jour Izv. Math.
\yr 1996
\vol 60
\issue 2
\pages 231--248
\crossref{https://doi.org/10.1070/IM1996v060n02ABEH000069}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746937282}
Linking options:
http://mi.mathnet.ru/eng/izv69https://doi.org/10.4213/im69 http://mi.mathnet.ru/eng/izv/v60/i2/p3
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
E. I. Berezhnoi, “The Correction Theorem for Anisotropic Spaces”, Math. Notes, 70:3 (2001), 291–299
-
E. I. Berezhnoi, “A Subspace of Hölder Space Consisting Only of Nonsmoothest Functions”, Math. Notes, 74:3 (2003), 316–325
-
E. I. Berezhnoǐ, “A sharp extrapolation theorem for Lorentz spaces”, Siberian Math. J., 54:3 (2013), 406–418
-
E. I. Berezhnoi, “Correction theorem for Sobolev spaces constructed by a symmetric space”, Proc. Steklov Inst. Math., 284 (2014), 32–49
|
Number of views: |
This page: | 391 | Full text: | 154 | References: | 46 | First page: | 1 |
|