RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 1995, Volume 59, Issue 1, Pages 157–184 (Mi izv7)  

This article is cited in 6 scientific papers (total in 6 papers)

Completely integrable projective symplectic 4-dimensional varieties

D. G. Markushevich

Université Claude Bernard Lyon 1

Abstract: Families of Liouville tori on a completely integrable compact complex symplectic manifold are considered as a tool for constructing such manifolds: given a family of $n$-dimensional tori with degenerations over an $n$-dimensional base, find conditions which guarantee the existence of a symplectic structure on this family such that the generic fiber is maximal isotropic. This question is studied for families of Jacobians of genus 2 curves in terms of the relative compactified Jacobian and point Hilbert scheme. The question on possible bases of families of Liouville tori is investigated in using Fujita–Kawamata–Viehweg–Kollár results on positivity properties of direct images of relative dualizing sheaves. In the case when the base surface is the projective plane, it is proved that the family of Jacobians is Liouville iff it is the Mukai transform of the Fujiki–Beauville 4-fold built from a hyperelliptic K3 surface.
Bibliography: 44 titles.

Full text: PDF file (4780 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 1995, 59:1, 159–187

Bibliographic databases:

MSC: 14M99
Received: 24.02.1993
Language:

Citation: D. G. Markushevich, “Completely integrable projective symplectic 4-dimensional varieties”, Izv. RAN. Ser. Mat., 59:1 (1995), 157–184; Izv. Math., 59:1 (1995), 159–187

Citation in format AMSBIB
\Bibitem{Mar95}
\by D.~G.~Markushevich
\paper Completely integrable projective symplectic 4-dimensional varieties
\jour Izv. RAN. Ser. Mat.
\yr 1995
\vol 59
\issue 1
\pages 157--184
\mathnet{http://mi.mathnet.ru/izv7}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1328559}
\zmath{https://zbmath.org/?q=an:0839.58027}
\transl
\jour Izv. Math.
\yr 1995
\vol 59
\issue 1
\pages 159--187
\crossref{https://doi.org/10.1070/IM1995v059n01ABEH000007}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1995RZ88700007}


Linking options:
  • http://mi.mathnet.ru/eng/izv7
  • http://mi.mathnet.ru/eng/izv/v59/i1/p157

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Matsushita D., “On Fibre Space Structures of a Projective Irreducible Symplectic Manifold”, Topology, 38:1 (1999), 79–83  crossref  mathscinet  zmath  isi
    2. Sawon J., “Derived Equivalence of Holomorphic Symplectic Manifolds”, Algebraic Structures and Moduli Spaces, CRM Proceedings & Lecture Notes, 38, eds. Johnson W., Markman E., Amer Mathematical Soc, 2004, 193–211  mathscinet  zmath  isi
    3. Sawon J., “Lagrangian Fibrations on Hilbert Schemes of Points on K3 Surfaces”, J. Algebr. Geom., 16:3 (2007), 477–497  crossref  mathscinet  zmath  isi
    4. Sawon J., “Twisted Fourier-Mukai transforms for holomorphic symplectic four-folds”, Advances in Mathematics, 218:3 (2008), 828–864  crossref  mathscinet  zmath  isi
    5. J. Sawon, “Foliations on Hypersurfaces in Holomorphic Symplectic Manifolds”, Internat Math Res Notices, 2009  crossref  mathscinet  isi
    6. Justin Sawon, “Fibrations on four-folds with trivial canonical bundles”, Geom Dedicata, 2013  crossref
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:161
    Full text:76
    References:20
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019