RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2006, Volume 70, Issue 3, Pages 129–166 (Mi izv704)  

This article is cited in 4 scientific papers (total in 4 papers)

$L^p$-Fourier multipliers with bounded powers

V. V. Lebedeva, A. M. Olevskiib

a Moscow State Institute of Electronics and Mathematics (Technical University)
b Tel Aviv University, School of Mathematical Sciences

Abstract: We consider the space $M_p(\mathbb R^d)$ of $L^p$-Fourier multipliers and give a detailed proof of the following result announced by the authors in $\lbrack10\rbrack$: if $\varphi\colon\mathbb R^d\to \lbrack0, 2\pi\lbrack$ is a measurable function and $\|e^{in\varphi}\|_{M_p}=O(1)$, $n\in\mathbb Z$, for some $p\ne 2$, then the function $\varphi$ is linear in domains complementary to some closed set $E(\varphi)$ of Lebesgue measure zero, and the set of values of the gradient of $\varphi$ is finite. We also consider the question of which sets can appear as $E(\varphi)$. We study the behaviour of the norms of the exponential functions $e^{i\lambda\varphi}$ in the case when the frequency $\lambda$ tends to infinity along a sequence of real numbers. In particular, we construct a homeomorphism $\varphi$ of the line $\mathbb R$ which is non-linear on every interval and satisfies $\|e^{i2^n\varphi}\|_{M_p(\mathbb R)}=O(1)$, $n=0, 1, 2,…$, for all $p$, $1<p<\infty$.

DOI: https://doi.org/10.4213/im704

Full text: PDF file (836 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2006, 70:3, 549–585

Bibliographic databases:

UDC: 517.51+513.88
MSC: 42A45
Received: 05.04.2005

Citation: V. V. Lebedev, A. M. Olevskii, “$L^p$-Fourier multipliers with bounded powers”, Izv. RAN. Ser. Mat., 70:3 (2006), 129–166; Izv. Math., 70:3 (2006), 549–585

Citation in format AMSBIB
\Bibitem{LebOle06}
\by V.~V.~Lebedev, A.~M.~Olevskii
\paper $L^p$-Fourier multipliers with bounded powers
\jour Izv. RAN. Ser. Mat.
\yr 2006
\vol 70
\issue 3
\pages 129--166
\mathnet{http://mi.mathnet.ru/izv704}
\crossref{https://doi.org/10.4213/im704}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2238173}
\zmath{https://zbmath.org/?q=an:1187.42004}
\elib{http://elibrary.ru/item.asp?id=9226823}
\transl
\jour Izv. Math.
\yr 2006
\vol 70
\issue 3
\pages 549--585
\crossref{https://doi.org/10.1070/IM2006v070n03ABEH002319}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000241056000003}
\elib{http://elibrary.ru/item.asp?id=18102780}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33749548005}


Linking options:
  • http://mi.mathnet.ru/eng/izv704
  • https://doi.org/10.4213/im704
  • http://mi.mathnet.ru/eng/izv/v70/i3/p129

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. V. Lebedev, “On $l^p$-Multipliers of Functions Analytic in the Disk”, Funct. Anal. Appl., 48:3 (2014), 231–234  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    2. Lebedev V., “Thickness Conditions and Littlewood-Paley Sets”, Studia Math., 220:3 (2014), 265–276  crossref  mathscinet  zmath  isi  scopus
    3. Cheng R., Mashreghi J., Ross W.T., “Multipliers of Sequence Spaces”, Concr. Operators, 4:1 (2017), 76–108  crossref  mathscinet  zmath  isi
    4. Lebedev V., “Sets With Distinct Sums of Pairs, Long Arithmetic Progressions, and Continuous Mappings”, Anal. Math., 44:3 (2018), 369–380  crossref  mathscinet  isi  scopus
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:423
    Full text:144
    References:48
    First page:6

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019