RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2007, Volume 71, Issue 4, Pages 103–114 (Mi izv725)  

This article is cited in 8 scientific papers (total in 8 papers)

Attracting fixed points of polynomial dynamical systems in fields of $p$-adic numbers

A. Yu. Khrennikov, P.-A. Svensson

Växjö University

Abstract: We consider dynamical systems of the form $h(x)=x+g(x)$, where $g(x)$ is a monic irreducible polynomial with coefficients in the ring of integers of a $\mathfrak p$-adic field $K$. We also study 2-periodic points of some simple polynomials of this form in the case when $K=\mathbb Q_p$.

DOI: https://doi.org/10.4213/im725

Full text: PDF file (514 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2007, 71:4, 753–764

Bibliographic databases:

UDC: 511+517.987
MSC: 37E15, 11S05, 46S10
Received: 14.12.2005

Citation: A. Yu. Khrennikov, P. Svensson, “Attracting fixed points of polynomial dynamical systems in fields of $p$-adic numbers”, Izv. RAN. Ser. Mat., 71:4 (2007), 103–114; Izv. Math., 71:4 (2007), 753–764

Citation in format AMSBIB
\Bibitem{KhrSve07}
\by A.~Yu.~Khrennikov, P.~Svensson
\paper Attracting fixed points of polynomial dynamical systems in fields of~$p$-adic numbers
\jour Izv. RAN. Ser. Mat.
\yr 2007
\vol 71
\issue 4
\pages 103--114
\mathnet{http://mi.mathnet.ru/izv725}
\crossref{https://doi.org/10.4213/im725}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2360008}
\zmath{https://zbmath.org/?q=an:1168.37011}
\elib{http://elibrary.ru/item.asp?id=9564924}
\transl
\jour Izv. Math.
\yr 2007
\vol 71
\issue 4
\pages 753--764
\crossref{https://doi.org/10.1070/IM2007v071n04ABEH002374}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000250438300004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-35748952812}


Linking options:
  • http://mi.mathnet.ru/eng/izv725
  • https://doi.org/10.4213/im725
  • http://mi.mathnet.ru/eng/izv/v71/i4/p103

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Proc. Steklov Inst. Math., 265 (2009), 235–241  mathnet  crossref  mathscinet  zmath  isi  elib
    2. Lindahl K.-O., “Linearization in ultrametric dynamics in fields of characteristic zero — Equal characteristic case”, P-Adic Numbers Ultrametric Anal. Appl., 1:4 (2009), 307–316  crossref  mathscinet  zmath
    3. Lindahl K.-O., Zieve M., “On hyperbolic fixed points in ultrametric dynamics”, P-Adic Numbers Ultrametric Anal. Appl., 2:3 (2010), 232–240  crossref  mathscinet  zmath
    4. Svensson P.-A., “Criteria for non-repelling fixed points”, Advances in $p$-adic and non-Archimedean analysis, Contemp. Math., 508, Amer. Math. Soc., Providence, RI, 2010, 239–252  crossref  mathscinet  zmath  isi
    5. Yurova E., “On measure-preserving functions over $\mathbb Z_3$”, P-Adic Numbers Ultrametric Anal. Appl., 4:4 (2012), 326–335  crossref  mathscinet  zmath  scopus
    6. Karl-Olof Lindahl, “The size of quadratic p-adic linearization disks”, Advances in Mathematics, 248 (2013), 872  crossref  mathscinet  zmath  isi  scopus
    7. Andrei Khrennikov, Ekaterina Yurova, “Criteria of ergodicity for p-adic dynamical systems in terms of coordinate functions”, Chaos, Solitons & Fractals, 60 (2014), 11  crossref  mathscinet  zmath  isi  scopus
    8. E. Yurova Axelsson, “On recent results of ergodic property for p-adic dynamical systems”, P-Adic Num Ultrametr Anal Appl, 6:3 (2014), 235  crossref  mathscinet  scopus
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:407
    Full text:128
    References:73
    First page:7

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019