|
This article is cited in 5 scientific papers (total in 5 papers)
Lubin–Tate extensions, an elementary approach
Yu. L. Ershov Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Abstract:
We give an elementary proof of the assertion that the Lubin–Tate
extension $L\ge K$ is an Abelian extension whose Galois group is isomorphic
to $U_K/N_{L/K}(U_L)$ for arbitrary fields $K$ that have Henselian discrete
valuation rings with finite residue fields. The term ‘elementary’ only means
that the proofs are algebraic (that is, no transcedental methods are
used [1], pp. 327, 332).
DOI:
https://doi.org/10.4213/im728
Full text:
PDF file (537 kB)
References:
PDF file
HTML file
English version:
Izvestiya: Mathematics, 2007, 71:6, 1079–1104
Bibliographic databases:
UDC:
510.53+512.52
MSC: 11S31, 14L05 Received: 20.12.2005
Citation:
Yu. L. Ershov, “Lubin–Tate extensions, an elementary approach”, Izv. RAN. Ser. Mat., 71:6 (2007), 3–28; Izv. Math., 71:6 (2007), 1079–1104
Citation in format AMSBIB
\Bibitem{Ers07}
\by Yu.~L.~Ershov
\paper Lubin--Tate extensions, an elementary approach
\jour Izv. RAN. Ser. Mat.
\yr 2007
\vol 71
\issue 6
\pages 3--28
\mathnet{http://mi.mathnet.ru/izv728}
\crossref{https://doi.org/10.4213/im728}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2378693}
\zmath{https://zbmath.org/?q=an:1150.12001}
\elib{https://elibrary.ru/item.asp?id=9602115}
\transl
\jour Izv. Math.
\yr 2007
\vol 71
\issue 6
\pages 1079--1104
\crossref{https://doi.org/10.1070/IM2007v071n06ABEH002382}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000252675200001}
\elib{https://elibrary.ru/item.asp?id=13563298}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38849143819}
Linking options:
http://mi.mathnet.ru/eng/izv728https://doi.org/10.4213/im728 http://mi.mathnet.ru/eng/izv/v71/i6/p3
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Yu. L. Ershov, “Root continuity theorems in valued fields”, Siberian Math. J., 47:6 (2006), 1027–1033
-
Yu. L. Ershov, “Separants of some polynomials”, Siberian Math. J., 52:5 (2011), 836–839
-
Yu. L. Ershov, “Generalizations of Hensel's lemma and the nearest root method”, Algebra and Logic, 50:6 (2012), 473–477
-
Yu. L. Ershov, “Separant of an arbitrary polynomial”, Algebra and Logic, 53:6 (2015), 458–462
-
Yu. L. Ershov, “How to find (compute) a separant”, Algebra and Logic, 54:2 (2015), 155–160
|
Number of views: |
This page: | 342 | Full text: | 122 | References: | 41 | First page: | 14 |
|