RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2010, Volume 74, Issue 1, Pages 197–224 (Mi izv738)  

This article is cited in 6 scientific papers (total in 6 papers)

Exact asymptotics of Laplace-type Wiener integrals for $L^p$-functionals

V. R. Fatalov


Abstract: We prove theorems on the exact asymptotic behaviour of the integrals
$$ \mathsf{E}\exp\{u(\int_0^1|\xi(t)|^p dt)^{\alpha/p}\}, \quad \mathsf{E}\exp\{-u\int_0^1|\xi(t)|^p dt\}, \qquad u\to\infty, $$
for $p>0$ and $0<\alpha<2$ for two random processes $\xi(t)$, namely, the Wiener process and the Brownian bridge, and obtain other related results. Our approach is via the Laplace method for infinite-dimensional distributions, namely, Gaussian measures and the occupation time for Markov processes.

Keywords: large deviation, Gaussian process, Markov process, occupation time, covariance operator, generating operator, Schrödinger operator, hypergeometric function.

DOI: https://doi.org/10.4213/im738

Full text: PDF file (741 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2010, 74:1, 189–216

Bibliographic databases:

UDC: 519.2
MSC: Primary 60H05; Secondary 28C20, 60F10, 60J65
Received: 28.12.2005
Revised: 19.10.2007

Citation: V. R. Fatalov, “Exact asymptotics of Laplace-type Wiener integrals for $L^p$-functionals”, Izv. RAN. Ser. Mat., 74:1 (2010), 197–224; Izv. Math., 74:1 (2010), 189–216

Citation in format AMSBIB
\Bibitem{Fat10}
\by V.~R.~Fatalov
\paper Exact asymptotics of Laplace-type Wiener integrals for $L^p$-functionals
\jour Izv. RAN. Ser. Mat.
\yr 2010
\vol 74
\issue 1
\pages 197--224
\mathnet{http://mi.mathnet.ru/izv738}
\crossref{https://doi.org/10.4213/im738}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2655242}
\zmath{https://zbmath.org/?q=an:1188.60026}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2010IzMat..74..189F}
\elib{http://elibrary.ru/item.asp?id=20358714}
\transl
\jour Izv. Math.
\yr 2010
\vol 74
\issue 1
\pages 189--216
\crossref{https://doi.org/10.1070/IM2010v074n01ABEH002485}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000276747800005}
\elib{http://elibrary.ru/item.asp?id=15313416}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77950310576}


Linking options:
  • http://mi.mathnet.ru/eng/izv738
  • https://doi.org/10.4213/im738
  • http://mi.mathnet.ru/eng/izv/v74/i1/p197

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. R. Fatalov, “Small deviations for two classes of Gaussian stationary processes and $L^p$-functionals, $0<p\le\infty$”, Problems Inform. Transmission, 46:1 (2010), 62–85  mathnet  crossref  mathscinet  isi
    2. V. R. Fatalov, “Laplace-type exact asymptotic formulas for the Bogoliubov Gaussian measure”, Theoret. and Math. Phys., 168:2 (2011), 1112–1149  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    3. V. R. Fatalov, “Integral Functionals for the Exponential of the Wiener Process and the Brownian Bridge: Exact Asymptotics and Legendre Functions”, Math. Notes, 92:1 (2012), 79–98  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    4. V. R. Fatalov, “Ergodic means for large values of $T$ and exact asymptotics of small deviations for a multi-dimensional Wiener process”, Izv. Math., 77:6 (2013), 1224–1259  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    5. V. R. Fatalov, “The Laplace method for Gaussian measures and integrals in Banach spaces”, Problems Inform. Transmission, 49:4 (2013), 354–374  mathnet  crossref  isi
    6. V. R. Fatalov, “Brownian motion on $[0,\infty)$ with linear drift, reflected at zero: exact asymptotics for ergodic means”, Sb. Math., 208:7 (2017), 1014–1048  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:509
    Full text:77
    References:43
    First page:35

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019