RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2012, Volume 76, Issue 4, Pages 185–206 (Mi izv7583)  

This article is cited in 2 scientific papers (total in 2 papers)

Commutative homogeneous spaces with one-dimensional stabilizer

S. A. Shashkov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We find all homogeneous spaces $X=G/H$ of algebraic groups with one-dimensional stabilizer for which the action $G :T^*X$ is co-isotropic (that is, the tangent space of a generic $G$-orbit is co-isotropic).

Keywords: commutative homogeneous space, action of algebraic groups.

DOI: https://doi.org/10.4213/im7583

Full text: PDF file (670 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2012, 76:4, 820–839

Bibliographic databases:

Document Type: Article
UDC: 512.745.2
MSC: 14L24, 14M17, 17B45, 43A85, 53C30, 53D20
Received: 31.03.2011
Revised: 12.08.2011

Citation: S. A. Shashkov, “Commutative homogeneous spaces with one-dimensional stabilizer”, Izv. RAN. Ser. Mat., 76:4 (2012), 185–206; Izv. Math., 76:4 (2012), 820–839

Citation in format AMSBIB
\Bibitem{Sha12}
\by S.~A.~Shashkov
\paper Commutative homogeneous spaces with one-dimensional stabilizer
\jour Izv. RAN. Ser. Mat.
\yr 2012
\vol 76
\issue 4
\pages 185--206
\mathnet{http://mi.mathnet.ru/izv7583}
\crossref{https://doi.org/10.4213/im7583}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3013274}
\zmath{https://zbmath.org/?q=an:1254.14057}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2012IzMat..76..820S}
\elib{http://elibrary.ru/item.asp?id=20425238}
\transl
\jour Izv. Math.
\yr 2012
\vol 76
\issue 4
\pages 820--839
\crossref{https://doi.org/10.1070/IM2012v076n04ABEH002605}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000308069200007}
\elib{http://elibrary.ru/item.asp?id=20495881}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84865209756}


Linking options:
  • http://mi.mathnet.ru/eng/izv7583
  • https://doi.org/10.4213/im7583
  • http://mi.mathnet.ru/eng/izv/v76/i4/p185

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Related presentations:

    This publication is cited in the following articles:
    1. A. Yu. Konyaev, “Classification of Lie algebras with generic orbits of dimension 2 in the coadjoint representation”, Sb. Math., 205:1 (2014), 45–62  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. A. T. Fomenko, A. Yu. Konyaev, “Geometry, dynamics and different types of orbits”, J. Fixed Point Theory Appl., 15:1 (2014), 49–66  crossref  mathscinet  zmath  isi  scopus
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:227
    Full text:40
    References:35
    First page:9

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019