RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 1994, Volume 58, Issue 3, Pages 3–35 (Mi izv784)  

This article is cited in 7 scientific papers (total in 7 papers)

$G$-convergence and homogenization of nonlinear elliptic operators in divergence form with variable domain

A. A. Kovalevsky

Institute of Applied Mathematics and Mechanics, Ukraine National Academy of Sciences

Abstract: The concepts of $G$-convergence and strong $G$-convergence of a sequence of elliptic operators $A_s\colon W^{1,m}(\Omega_s)\to(W^{1,m}(\Omega_s))^*$ are studied, where $\Omega_s$, $s=1,2,…$, are perforated domains contained in a bounded domain $\Omega\subset\mathbf R^n$. It is established that $G$-convergence of the operators $A_s$ is accompanied by convergence of solutions of certain equations and variational inequalities connected with the operators $A_s$ and a theorem on selection from the sequence $\{A_s\}$ of a strongly $G$-convergent subsequence. It is shown that under the condition of periodicity of the perforation of domains $\Omega_s$ and certain assumptions regarding the coefficients of the operators $A_s$, strong $G$-convergence of $\{A_s\}$ to an operator $A\colon W^{1,m}(\Omega)\to(W^{1,m}(\Omega))^*$ holds with effectively computable coefficients.

Full text: PDF file (1546 kB)
References: PDF file   HTML file

English version:
Russian Academy of Sciences. Izvestiya Mathematics, 1995, 44:3, 431–460

Bibliographic databases:

UDC: 517.98
MSC: 35J60, 35J85, 47F05
Received: 25.12.1992

Citation: A. A. Kovalevsky, “$G$-convergence and homogenization of nonlinear elliptic operators in divergence form with variable domain”, Izv. RAN. Ser. Mat., 58:3 (1994), 3–35; Russian Acad. Sci. Izv. Math., 44:3 (1995), 431–460

Citation in format AMSBIB
\Bibitem{Kov94}
\by A.~A.~Kovalevsky
\paper $G$-convergence and homogenization of nonlinear elliptic operators in divergence form with variable domain
\jour Izv. RAN. Ser. Mat.
\yr 1994
\vol 58
\issue 3
\pages 3--35
\mathnet{http://mi.mathnet.ru/izv784}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1286837}
\zmath{https://zbmath.org/?q=an:0836.35014}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1995IzMat..44..431K}
\transl
\jour Russian Acad. Sci. Izv. Math.
\yr 1995
\vol 44
\issue 3
\pages 431--460
\crossref{https://doi.org/10.1070/IM1995v044n03ABEH001607}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1995RQ68000001}


Linking options:
  • http://mi.mathnet.ru/eng/izv784
  • http://mi.mathnet.ru/eng/izv/v58/i3/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. P. I. Kogut, “G*-Convergence of Nonlinear Operators in the Theory of Homogenization of Control Objects”, Cybern Syst Anal, 41:5 (2005), 670  crossref  mathscinet  zmath
    2. Alexander A. Kovalevsky, “Obstacle problems in variable domains”, Complex Variables and Elliptic Equations, 2011, 1  crossref
    3. A. A. Kovalevsky, “On the convergence of solutions of variational problems with bilateral obstacles in variable domains”, Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 151–163  mathnet  crossref  mathscinet  isi  elib
    4. Kovalevsky A.A., “On the convergence of solutions to bilateral problems with the zero lower constraint and an arbitrary upper constraint in variable domains”, Nonlinear Anal.-Theory Methods Appl., 147 (2016), 63–79  crossref  mathscinet  zmath  isi  scopus
    5. A. A. Kovalevskii, “Variatsionnye zadachi s odnostoronnimi potochechno funktsionalnymi ogranicheniyami v peremennykh oblastyakh”, Tr. IMM UrO RAN, 23, no. 2, 2017, 133–150  mathnet  crossref  elib
    6. Alexander A. Kovalevsky, “Convergence of solutions of bilateral problems in variable domains and related questions”, Ural Math. J., 3:2 (2017), 51–66  mathnet  crossref
    7. A. A. Kovalevskii, “O skhodimosti reshenii variatsionnykh zadach s neyavnymi ogranicheniyami, zadannymi bystro ostsilliruyuschimi funktsiyami”, Tr. IMM UrO RAN, 24, no. 2, 2018, 107–122  mathnet  crossref  elib
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:277
    Full text:83
    References:43
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019