RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2013, Volume 77, Issue 3, Pages 77–92 (Mi izv7959)  

This article is cited in 3 scientific papers (total in 3 papers)

The rationality of the moduli spaces of Coble surfaces and of nodal Enriques surfaces

I. V. Dolgacheva, Sh. Kondob

a University of Michigan, Department of Mathematics
b Nagoya University, Graduate School of Mathematics

Abstract: We prove the rationality of the coarse moduli spaces of Coble surfaces and of nodal Enriques surfaces over the field of complex numbers.
Bibliography: 22 titles.

Keywords: Enriques surfaces, Coble surfaces, moduli spaces, rationality problem.

Funding Agency Grant Number
Japan Society for the Promotion of Science (S) 22224001
(S) 19104001


DOI: https://doi.org/10.4213/im7959

Full text: PDF file (530 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2013, 77:3, 509–524

Bibliographic databases:

UDC: 512
MSC: 14J28, 14E08, 14D22
Received: 31.01.2012
Revised: 27.04.2012
Language:

Citation: I. V. Dolgachev, Sh. Kondo, “The rationality of the moduli spaces of Coble surfaces and of nodal Enriques surfaces”, Izv. RAN. Ser. Mat., 77:3 (2013), 77–92; Izv. Math., 77:3 (2013), 509–524

Citation in format AMSBIB
\Bibitem{DolKon13}
\by I.~V.~Dolgachev, Sh.~Kondo
\paper The rationality of the moduli spaces of~Coble surfaces and of nodal Enriques surfaces
\jour Izv. RAN. Ser. Mat.
\yr 2013
\vol 77
\issue 3
\pages 77--92
\mathnet{http://mi.mathnet.ru/izv7959}
\crossref{https://doi.org/10.4213/im7959}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3098788}
\zmath{https://zbmath.org/?q=an:06196286}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2013IzMat..77..509D}
\elib{http://elibrary.ru/item.asp?id=20359186}
\transl
\jour Izv. Math.
\yr 2013
\vol 77
\issue 3
\pages 509--524
\crossref{https://doi.org/10.1070/IM2013v077n03ABEH002646}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000320769300004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879921507}


Linking options:
  • http://mi.mathnet.ru/eng/izv7959
  • https://doi.org/10.4213/im7959
  • http://mi.mathnet.ru/eng/izv/v77/i3/p77

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Goto Yasuhiro, R. Livné, N. Yui, “Automorphy of Calabi-Yau threefolds of Borcea-Voisin type over $\mathbb Q$”, Commun. Number Theory Phys., 7:4 (2013), 581–670  crossref  mathscinet  zmath  isi  scopus
    2. Shouhei Ma, “Rationality of the moduli spaces of 2-elementary $K3$ surfaces”, J. Algebraic Geom., 24:1 (2015), 81–158  crossref  mathscinet  zmath  isi  scopus
    3. Sh. Ma, H. Ohashi, Sh. Taki, “Rationality of the moduli spaces of Eisenstein $K3$ surfaces”, Trans. Amer. Math. Soc., 367:12 (2015), 8643–8679  crossref  mathscinet  zmath  isi  scopus
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:361
    Full text:62
    References:43
    First page:41

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019