|
Homotopy groups as centres of finitely presented groups
J. Wua, R. V. Mikhailovbcd a Department of Mathematics, National University of Singapore
b Saint-Petersburg State University
c Steklov Mathematical Institute, Russian Academy of Sciences
d Institute for Advanced Study, Princeton, NJ
Abstract:
For every finite Abelian group $A$ and integer $n\geq 3$ we construct a finitely
presented group defined by explicit generators and relations such that its
centre is isomorphic to $\pi_n(\Sigma K(A,1))$.
Keywords:
homotopy theory, homotopy groups, simplicial groups, finitely presented groups.
DOI:
https://doi.org/10.4213/im7981
Full text:
PDF file (571 kB)
References:
PDF file
HTML file
English version:
Izvestiya: Mathematics, 2013, 77:3, 581–593
Bibliographic databases:
UDC:
512.7
MSC: 20F38, 55Q52, 55U10, 57M07 Received: 21.03.2012 Revised: 23.07.2012
Citation:
J. Wu, R. V. Mikhailov, “Homotopy groups as centres of finitely presented groups”, Izv. RAN. Ser. Mat., 77:3 (2013), 149–162; Izv. Math., 77:3 (2013), 581–593
Citation in format AMSBIB
\Bibitem{WuMik13}
\by J.~Wu, R.~V.~Mikhailov
\paper Homotopy groups as centres of finitely presented groups
\jour Izv. RAN. Ser. Mat.
\yr 2013
\vol 77
\issue 3
\pages 149--162
\mathnet{http://mi.mathnet.ru/izv7981}
\crossref{https://doi.org/10.4213/im7981}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3098792}
\zmath{https://zbmath.org/?q=an:06196290}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2013IzMat..77..581W}
\elib{https://elibrary.ru/item.asp?id=20359190}
\transl
\jour Izv. Math.
\yr 2013
\vol 77
\issue 3
\pages 581--593
\crossref{https://doi.org/10.1070/IM2013v077n03ABEH002650}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000320769300008}
\elib{https://elibrary.ru/item.asp?id=20527301}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879905098}
Linking options:
http://mi.mathnet.ru/eng/izv7981https://doi.org/10.4213/im7981 http://mi.mathnet.ru/eng/izv/v77/i3/p149
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 492 | Full text: | 143 | References: | 31 | First page: | 35 |
|