RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 1994, Volume 58, Issue 2, Pages 40–72 (Mi izv802)  

This article is cited in 8 scientific papers (total in 8 papers)

Random processes generated by a hyperbolic sequence of mappings. I

V. I. Bakhtin


Abstract: For a sequence of smooth mappings of a Riemannian manifold, which is a nonstationary analogue of a hyperbolic dynamical system, a compatible sequence of measures carrying one into another under the mappings is constructed. A geometric interpretation is given for these measures, and it is proved that they depend smoothly on the parameter. The central limit theorem is proved for a sequence of smooth functions on the manifold with respect to these measures; it is shown that the correlations decrease exponentially, and an exponential estimate like Bernstein's inequality is obtained for probabilities of large deviations.

Full text: PDF file (1713 kB)
References: PDF file   HTML file

English version:
Russian Academy of Sciences. Izvestiya Mathematics, 1995, 44:2, 247–279

Bibliographic databases:

UDC: 517.987
MSC: Primary 58F15, 58F11; Secondary 58F12, 60F05, 60F10, 28D10
Received: 16.06.1992

Citation: V. I. Bakhtin, “Random processes generated by a hyperbolic sequence of mappings. I”, Izv. RAN. Ser. Mat., 58:2 (1994), 40–72; Russian Acad. Sci. Izv. Math., 44:2 (1995), 247–279

Citation in format AMSBIB
\Bibitem{Bak94}
\by V.~I.~Bakhtin
\paper Random processes generated by a hyperbolic sequence of mappings. I
\jour Izv. RAN. Ser. Mat.
\yr 1994
\vol 58
\issue 2
\pages 40--72
\mathnet{http://mi.mathnet.ru/izv802}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1275901}
\zmath{https://zbmath.org/?q=an:0832.58027}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1995IzMat..44..247B}
\transl
\jour Russian Acad. Sci. Izv. Math.
\yr 1995
\vol 44
\issue 2
\pages 247--279
\crossref{https://doi.org/10.1070/IM1995v044n02ABEH001596}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1995RB41200003}


Linking options:
  • http://mi.mathnet.ru/eng/izv802
  • http://mi.mathnet.ru/eng/izv/v58/i2/p40

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. V. I. Bakhtin, “Random processes generated by a hyperbolic sequence of mappings. II”, Russian Acad. Sci. Izv. Math., 44:3 (1995), 617–627  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. V. I. Bakhtin, “Foliated Functions and an Averaged Weighted Shift Operator for Perturbations of Hyperbolic Mappings”, Proc. Steklov Inst. Math., 244 (2004), 29–57  mathnet  mathscinet  zmath
    3. V. I. Bakhtin, “Cramér Asymptotics in the Averaging Method for Systems with Fast Hyperbolic Motions”, Proc. Steklov Inst. Math., 244 (2004), 58–79  mathnet  mathscinet  zmath
    4. Arvind Ayyer, Mikko Stenlund, “Exponential decay of correlations for randomly chosen hyperbolic toral automorphisms”, Chaos, 17:4 (2007), 043116  crossref  mathscinet  zmath  adsnasa  isi
    5. DAVID RUELLE, “Differentiation of SRB states for hyperbolic flows”, Ergod Th Dynam Sys, 28:2 (2008)  crossref  mathscinet  isi
    6. Stenlund M., “Non-Stationary Compositions of Anosov Diffeomorphisms”, Nonlinearity, 24:10 (2011), 2991–3018  crossref  mathscinet  zmath  adsnasa  isi
    7. Péter Nándori, Domokos Szász, Tamás Varjú, “A Central Limit Theorem for Time-Dependent Dynamical Systems”, J Stat Phys, 2012  crossref
    8. M. Gordin, M. Denker, “Poisson limit for two-dimensional toral automorphisms driven by continued fractions”, J. Math. Sci. (N. Y.), 199:2 (2014), 139–149  mathnet  crossref  mathscinet
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:249
    Full text:76
    References:36
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019