RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2013, Volume 77, Issue 4, Pages 5–30 (Mi izv8024)  

This article is cited in 1 scientific paper (total in 1 paper)

Operations on $t$-structures and perverse coherent sheaves

A. I. Bondalab

a Steklov Mathematical Institute of the Russian Academy of Sciences
b Institute for the Physics and Mathematics of the Universe, University of Tokyo

Abstract: We introduce the notions of consistent pairs and consistent chains of $t$-structures and prove that two consistent chains of $t$-structures generate a distributive lattice. The technique developed is then applied to the pairs of chains obtained from the standard $t$-structure on the derived category of coherent sheaves and the dual $t$-structure by means of the shift functor. This yields a family of $t$-structures whose hearts are known as perverse coherent sheaves.

Keywords: derived categories of coherent sheaves, perverse sheaves, $t$-structures.

DOI: https://doi.org/10.4213/im8024

Full text: PDF file (587 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2013, 77:4, 651–674

Bibliographic databases:

Document Type: Article
UDC: 512.73+512.66
MSC: 14F05, 18E30
Received: 02.07.2012
Revised: 07.10.2012

Citation: A. I. Bondal, “Operations on $t$-structures and perverse coherent sheaves”, Izv. RAN. Ser. Mat., 77:4 (2013), 5–30; Izv. Math., 77:4 (2013), 651–674

Citation in format AMSBIB
\Bibitem{Bon13}
\by A.~I.~Bondal
\paper Operations on $t$-structures and perverse coherent sheaves
\jour Izv. RAN. Ser. Mat.
\yr 2013
\vol 77
\issue 4
\pages 5--30
\mathnet{http://mi.mathnet.ru/izv8024}
\crossref{https://doi.org/10.4213/im8024}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3135695}
\zmath{https://zbmath.org/?q=an:06216122}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2013IzMat..77..651B}
\elib{http://elibrary.ru/item.asp?id=20425249}
\transl
\jour Izv. Math.
\yr 2013
\vol 77
\issue 4
\pages 651--674
\crossref{https://doi.org/10.1070/IM2013v077n04ABEH002654}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000323747900001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84884776283}


Linking options:
  • http://mi.mathnet.ru/eng/izv8024
  • https://doi.org/10.4213/im8024
  • http://mi.mathnet.ru/eng/izv/v77/i4/p5

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Yu. Qiu, J. Woolf, “Contractible stability spaces and faithful braid group actions”, Geom. Topol., 22:6 (2018), 3701–3760  crossref  mathscinet  zmath  isi  scopus
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:342
    Full text:50
    References:44
    First page:45

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019