Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2014, Volume 78, Issue 5, Pages 167–190 (Mi izv8107)  

This article is cited in 4 scientific papers (total in 4 papers)

Singular regimes in controlled systems with multidimensional control in a polyhedron

L. V. Lokutsievskii

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We study Hamiltonian systems that are affine in a multidimensional control varying in a polyhedron $\Omega$. Quite often, a crucial role in the study of the global behaviour of solutions of such systems is played by special trajectories and the geometry of their neighbourhoods. We prove a theorem on the structure of the output of optimal trajectories to a first-order singular trajectory in a neighbourhood of this trajectory (and of the exit from it) for systems with holonomic control. We also prove that in a neighbourhood of a first-order singular trajectory, a Lagrangian surface is woven in a special way from the trajectories of the system that are singular with respect to the faces of $\Omega$. We suggest a simple way to find explicitly first-order special trajectories with respect to the faces of $\Omega$. As a result, we describe a complete picture of the optimal synthesis obtained by the successive conjugation of first-order singular extremals.

Keywords: optimal control, singular trajectories, multidimensional control, optimal synthesis.

DOI: https://doi.org/10.4213/im8107

Full text: PDF file (643 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2014, 78:5, 1006–1027

Bibliographic databases:

UDC: 517.97
MSC: 49J15
Received: 22.02.2013

Citation: L. V. Lokutsievskii, “Singular regimes in controlled systems with multidimensional control in a polyhedron”, Izv. RAN. Ser. Mat., 78:5 (2014), 167–190; Izv. Math., 78:5 (2014), 1006–1027

Citation in format AMSBIB
\Bibitem{Lok14}
\by L.~V.~Lokutsievskii
\paper Singular regimes in controlled systems with multidimensional control in a~polyhedron
\jour Izv. RAN. Ser. Mat.
\yr 2014
\vol 78
\issue 5
\pages 167--190
\mathnet{http://mi.mathnet.ru/izv8107}
\crossref{https://doi.org/10.4213/im8107}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3308648}
\zmath{https://zbmath.org/?q=an:1304.49004}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2014IzMat..78.1006L}
\elib{https://elibrary.ru/item.asp?id=22834332}
\transl
\jour Izv. Math.
\yr 2014
\vol 78
\issue 5
\pages 1006--1027
\crossref{https://doi.org/10.1070/IM2014v078n05ABEH002716}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000344454800007}
\elib{https://elibrary.ru/item.asp?id=23997363}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84908394616}


Linking options:
  • http://mi.mathnet.ru/eng/izv8107
  • https://doi.org/10.4213/im8107
  • http://mi.mathnet.ru/eng/izv/v78/i5/p167

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. I. Zelikin, L. V. Lokutsievskii, R. Hildebrand, “Typicality of chaotic fractal behavior of integral vortices in Hamiltonian systems with discontinuous right hand side”, Journal of Mathematical Sciences, 221:1 (2017), 1–136  mathnet  crossref
    2. L. V. Lokutsievskiy, “On an optimal flow in a class of nilpotent convex problems”, Proc. Steklov Inst. Math., 291 (2015), 146–169  mathnet  crossref  crossref  isi  elib  elib
    3. L. Manita, “Optimization problems for WSNs: trade-off between synchronization errors and energy consumption”, International Conference on Computer Simulation in Physics and Beyond 2015, Journal of Physics: Conference Series, 681:1 (2016), 012009, IOP Publishing Ltd  crossref  isi  scopus
    4. L. V. Lokoutsievskiy, V. A. Mirikova, “Optimal Synthesis in a Model Problem with Two-Dimensional Control Lying in an Arbitrary Convex Set”, Math. Notes, 105:1 (2019), 36–55  mathnet  crossref  crossref  mathscinet  isi  elib
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:390
    Full text:88
    References:59
    First page:46

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021