Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2014, Volume 78, Issue 4, Pages 109–122 (Mi izv8143)  

This article is cited in 1 scientific paper (total in 1 paper)

Liouville's equation as a Schrödinger equation

V. V. Kozlov

Steklov Mathematical Institute of the Russian Academy of Sciences

Abstract: We show that every non-negative solution of Liouville's equation for an arbitrary (possibly non-Hamiltonian) dynamical system admits a factorization $\psi\psi^*$, where $\psi$ satisfies a Schrödinger equation of special form. The corresponding quantum system is obtained by Weyl quantization of a Hamiltonian system whose Hamiltonian is linear in the momenta. We discuss the structure of the spectrum of the special Schrödinger equation on a multidimensional torus and show that the eigenfunctions may have finite smoothness in the analytic case. Our generalized solutions of the Schrödinger equation are natural examples of non-selfadjoint extensions of Hermitian differential operators. We give conditions for the existence of a smooth invariant measure of a dynamical system. They are expressed in terms of stability conditions for the conjugate equations of variations.

Keywords: Weyl quantization, Hermitian operator, non-selfadjoint extension, invariant manifold, invariant measure.

DOI: https://doi.org/10.4213/im8143

Full text: PDF file (476 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2014, 78:4, 744–757

Bibliographic databases:

UDC: 517.43
MSC: 70G60, 70H14, 70K42, 81Q10
Received: 04.07.2013

Citation: V. V. Kozlov, “Liouville's equation as a Schrödinger equation”, Izv. RAN. Ser. Mat., 78:4 (2014), 109–122; Izv. Math., 78:4 (2014), 744–757

Citation in format AMSBIB
\Bibitem{Koz14}
\by V.~V.~Kozlov
\paper Liouville's equation as a~Schr\"odinger equation
\jour Izv. RAN. Ser. Mat.
\yr 2014
\vol 78
\issue 4
\pages 109--122
\mathnet{http://mi.mathnet.ru/izv8143}
\crossref{https://doi.org/10.4213/im8143}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3288403}
\zmath{https://zbmath.org/?q=an:06358164}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2014IzMat..78..744K}
\elib{https://elibrary.ru/item.asp?id=21826429}
\transl
\jour Izv. Math.
\yr 2014
\vol 78
\issue 4
\pages 744--757
\crossref{https://doi.org/10.1070/IM2014v078n04ABEH002705}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000344454600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84907353862}


Linking options:
  • http://mi.mathnet.ru/eng/izv8143
  • https://doi.org/10.4213/im8143
  • http://mi.mathnet.ru/eng/izv/v78/i4/p109

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. V. Kozlov, “Quadratic conservation laws for equations of mathematical physics”, Russian Math. Surveys, 75:3 (2020), 445–494  mathnet  crossref  crossref  mathscinet  isi  elib
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:1176
    Full text:443
    References:70
    First page:79

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021