Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2015, Volume 79, Issue 1, Pages 217–224 (Mi izv8154)  

Localization of eigenvalues and estimation of the spread for complex matrices

J. Wu, D. Wang, J. Zhao

Chongqing University, China

Abstract: For a given complex matrix we describe new methods for localizing the eigenvalues and new upper bounds for the spread. These methods and upper bounds are sharper than those previously known.

Keywords: eigenvalues, localization, spread, upper bounds, new methods.

Funding Agency Grant Number
National Natural Science Foundation of China 70872123
This paper was written with the support of the Chinese National Foundation for Natural Sciences (grant no. 70872123).


DOI: https://doi.org/10.4213/im8154

Full text: PDF file (424 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2015, 79:1, 208–215

Bibliographic databases:

UDC: 512.64
MSC: 15A18, 65F15
Received: 26.07.2013
Revised: 12.02.2014

Citation: J. Wu, D. Wang, J. Zhao, “Localization of eigenvalues and estimation of the spread for complex matrices”, Izv. RAN. Ser. Mat., 79:1 (2015), 217–224; Izv. Math., 79:1 (2015), 208–215

Citation in format AMSBIB
\Bibitem{WuWanZha15}
\by J.~Wu, D.~Wang, J.~Zhao
\paper Localization of eigenvalues and estimation of the spread for complex matrices
\jour Izv. RAN. Ser. Mat.
\yr 2015
\vol 79
\issue 1
\pages 217--224
\mathnet{http://mi.mathnet.ru/izv8154}
\crossref{https://doi.org/10.4213/im8154}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3352587}
\zmath{https://zbmath.org/?q=an:06428110}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2015IzMat..79..208W}
\elib{https://elibrary.ru/item.asp?id=23421419}
\transl
\jour Izv. Math.
\yr 2015
\vol 79
\issue 1
\pages 208--215
\crossref{https://doi.org/10.1070/IM2015v079n01ABEH002739}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000350754500009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924283782}


Linking options:
  • http://mi.mathnet.ru/eng/izv8154
  • https://doi.org/10.4213/im8154
  • http://mi.mathnet.ru/eng/izv/v79/i1/p217

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:249
    Full text:86
    References:40
    First page:47

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021