|
On numerically pluricanonical cyclic coverings
Vik. S. Kulikova, V. M. Kharlamovb a Steklov Mathematical Institute of the Russian Academy of Sciences
b University Louis Pasteur
Abstract:
We investigate some properties of cyclic coverings $f\colon Y\to X$
(where $X$ is a complex surface of general type) branched along smooth curves
$B\subset X$ that are numerically equivalent to a multiple of the canonical
class of $X$. Our main results concern coverings of surfaces of general type
with $p_g=0$ and Miyaoka–Yau surfaces. In particular, such coverings provide
new examples of multi-component moduli spaces of surfaces with given Chern
numbers and new examples of surfaces that are not deformation equivalent
to their complex conjugates.
Keywords:
numerically pluricanonical cyclic coverings of surfaces,
irreducible components of moduli spaces of surfaces.
DOI:
https://doi.org/10.4213/im8175
Full text:
PDF file (635 kB)
References:
PDF file
HTML file
English version:
Izvestiya: Mathematics, 2014, 78:5, 986–1005
Bibliographic databases:
UDC:
512.7
MSC: 14E20, 14J29, 14J80, 32Q55 Received: 15.10.2013
Citation:
Vik. S. Kulikov, V. M. Kharlamov, “On numerically pluricanonical cyclic coverings”, Izv. RAN. Ser. Mat., 78:5 (2014), 143–166; Izv. Math., 78:5 (2014), 986–1005
Citation in format AMSBIB
\Bibitem{KulKha14}
\by Vik.~S.~Kulikov, V.~M.~Kharlamov
\paper On numerically pluricanonical cyclic coverings
\jour Izv. RAN. Ser. Mat.
\yr 2014
\vol 78
\issue 5
\pages 143--166
\mathnet{http://mi.mathnet.ru/izv8175}
\crossref{https://doi.org/10.4213/im8175}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3308647}
\zmath{https://zbmath.org/?q=an:06381146}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2014IzMat..78..986K}
\elib{https://elibrary.ru/item.asp?id=22834331}
\transl
\jour Izv. Math.
\yr 2014
\vol 78
\issue 5
\pages 986--1005
\crossref{https://doi.org/10.1070/IM2014v078n05ABEH002715}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000344454800006}
\elib{https://elibrary.ru/item.asp?id=23997860}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84908547574}
Linking options:
http://mi.mathnet.ru/eng/izv8175https://doi.org/10.4213/im8175 http://mi.mathnet.ru/eng/izv/v78/i5/p143
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 304 | Full text: | 70 | References: | 22 | First page: | 12 |
|