|
This article is cited in 2 scientific papers (total in 2 papers)
On a new type of $\ell$-adic regulator for algebraic number fields (the $\ell$-adic regulator without logarithms)
L. V. Kuz'min National Research Centre "Kurchatov Institute"
Abstract:
For an algebraic number field $K$ such that a prime $\ell$ splits
completely in $K$, we define a regulator
$\mathfrak R_\ell(K)\in\mathbb Z_\ell$ that characterizes the subgroup
of universal norms from the cyclotomic $\mathbb Z_\ell$-extension of $K$
in the completed group of $S$-units of $K$, where $S$ consists of all
prime divisors of $\ell$. We prove that the inequality $\mathfrak R_\ell(K)\ne0$
follows from the $\ell$-adic Schanuel conjecture and holds for some
Abelian extensions of imaginary quadratic fields. We study the connection
between the regulator $\mathfrak R_\ell(K)$ and the feeble conjecture
on the $\ell$-adic regulator, and define analogues of the Gross regulator.
Keywords:
$\ell$-adic regulator, $S$-units, global universal norm,
Schanuel conjecture, Iwasawa theory.
Funding Agency |
Grant Number |
Russian Foundation for Basic Research  |
11-01-00588-a |
This paper was written with the financial support of the Russian Foundation for Basic Research (grant no. 11-01-00588-a). |
DOI:
https://doi.org/10.4213/im8177
Full text:
PDF file (751 kB)
References:
PDF file
HTML file
English version:
Izvestiya: Mathematics, 2015, 79:1, 109–144
Bibliographic databases:
UDC:
511.236.3
MSC: 11R23, 11R18 Received: 16.10.2013
Citation:
L. V. Kuz'min, “On a new type of $\ell$-adic regulator for algebraic number fields (the $\ell$-adic regulator without logarithms)”, Izv. RAN. Ser. Mat., 79:1 (2015), 115–152; Izv. Math., 79:1 (2015), 109–144
Citation in format AMSBIB
\Bibitem{Kuz15}
\by L.~V.~Kuz'min
\paper On a~new type of $\ell$-adic regulator for algebraic number fields (the $\ell$-adic regulator without logarithms)
\jour Izv. RAN. Ser. Mat.
\yr 2015
\vol 79
\issue 1
\pages 115--152
\mathnet{http://mi.mathnet.ru/izv8177}
\crossref{https://doi.org/10.4213/im8177}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3352584}
\zmath{https://zbmath.org/?q=an:06428107}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2015IzMat..79..109K}
\elib{https://elibrary.ru/item.asp?id=23421416}
\transl
\jour Izv. Math.
\yr 2015
\vol 79
\issue 1
\pages 109--144
\crossref{https://doi.org/10.1070/IM2015v079n01ABEH002736}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000350754500006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924333058}
Linking options:
http://mi.mathnet.ru/eng/izv8177https://doi.org/10.4213/im8177 http://mi.mathnet.ru/eng/izv/v79/i1/p115
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
Cycle of papers
This publication is cited in the following articles:
-
L. V. Kuz'min, “On a new type of $\ell$-adic regulator for algebraic number fields. II”, St. Petersburg Math. J., 27:6 (2016), 977–984
-
L. V. Kuz'min, “Local and global universal norms in the cyclotomic $\mathbb Z_\ell$-extension
of an algebraic number field”, Izv. Math., 82:3 (2018), 532–548
|
Number of views: |
This page: | 277 | Full text: | 83 | References: | 19 | First page: | 6 |
|