RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 1994, Volume 58, Issue 1, Pages 121–143 (Mi izv818)  

This article is cited in 6 scientific papers (total in 6 papers)

Pseudocharacters on free groups

V. A. Faiziev


Abstract: The perturbations of additive real characters on a free group $F$ are studied. A description is given of the space of its pseudocharacters, i.e., the real functions $f$ on $F$ such that the set $\{f(xy)-f(x)-f(y)$; $x,y\in F\}$ is bounded and $f(x^n)=nf(x)$ $\forall n\in\mathbf Z$, $\forall x\in F$.

Full text: PDF file (1122 kB)
References: PDF file   HTML file

English version:
Russian Academy of Sciences. Izvestiya Mathematics, 1995, 44:1, 119–141

Bibliographic databases:

UDC: 519.46
MSC: 20C15, 20E05
Received: 21.10.1992

Citation: V. A. Faiziev, “Pseudocharacters on free groups”, Izv. RAN. Ser. Mat., 58:1 (1994), 121–143; Russian Acad. Sci. Izv. Math., 44:1 (1995), 119–141

Citation in format AMSBIB
\Bibitem{Fai94}
\by V.~A.~Faiziev
\paper Pseudocharacters on free groups
\jour Izv. RAN. Ser. Mat.
\yr 1994
\vol 58
\issue 1
\pages 121--143
\mathnet{http://mi.mathnet.ru/izv818}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1271517}
\zmath{https://zbmath.org/?q=an:0829.20016}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1995IzMat..44..119F}
\transl
\jour Russian Acad. Sci. Izv. Math.
\yr 1995
\vol 44
\issue 1
\pages 119--141
\crossref{https://doi.org/10.1070/IM1995v044n01ABEH001585}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1995QU91700006}


Linking options:
  • http://mi.mathnet.ru/eng/izv818
  • http://mi.mathnet.ru/eng/izv/v58/i1/p121

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Faiziev V., “Two-Dimensional Real Triangle Quasi-Representations of Free Groups”, Dokl. Akad. Nauk, 355:6 (1997), 737–739  mathnet  mathscinet  zmath  isi
    2. Faiziev V., “Pseudocharacters on Free Products of Groups”, Russ. J. Math. Phys., 5:1 (1997), 3–8  mathscinet  zmath  isi
    3. Faiziev V., “Pseudocharacters on Free Semigroups Invariant with Respect to their Automorphism Groups”, Proc. Amer. Math. Soc., 126:2 (1998), 333–342  crossref  mathscinet  zmath  isi
    4. Faiziev V., “Description of Pseudocharacters' Space on Free Product of Groups”, Math. Inequal. Appl., 3:2 (2000), 269–293  mathscinet  zmath  isi
    5. Faiziev V., Sahoo P., “Pseudocharacters and the Problem of Expressibility for Some Groups”, J. Algebra, 250:2 (2002), 603–637  crossref  mathscinet  zmath  isi
    6. D. D’Angeli, A. Donno, “Weights, growth, and amenability”, Journal of Mathematical Sciences (New York), 2008  crossref
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:164
    Full text:64
    References:26
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020