|
This article is cited in 3 scientific papers (total in 3 papers)
A strengthening of Mahler's transference theorem
O. N. German, K. G. Evdokimov M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
We obtain new transference theorems that improve some
classical theorems of Mahler. Our results are stated
in terms of consecutive minima of pseudo-compound
parallelepipeds.
Keywords:
transference principle, consecutive minima,
pseudo-compound parallelepipeds, dual lattices.
DOI:
https://doi.org/10.4213/im8195
Full text:
PDF file (529 kB)
References:
PDF file
HTML file
English version:
Izvestiya: Mathematics, 2015, 79:1, 60–73
Bibliographic databases:
UDC:
511.4
MSC: 11H06, 11H60, 11J13, 11J25 Received: 10.12.2013
Citation:
O. N. German, K. G. Evdokimov, “A strengthening of Mahler's transference theorem”, Izv. RAN. Ser. Mat., 79:1 (2015), 63–76; Izv. Math., 79:1 (2015), 60–73
Citation in format AMSBIB
\Bibitem{GerEvd15}
\by O.~N.~German, K.~G.~Evdokimov
\paper A strengthening of Mahler's transference theorem
\jour Izv. RAN. Ser. Mat.
\yr 2015
\vol 79
\issue 1
\pages 63--76
\mathnet{http://mi.mathnet.ru/izv8195}
\crossref{https://doi.org/10.4213/im8195}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3352582}
\zmath{https://zbmath.org/?q=an:06428105}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2015IzMat..79...60G}
\elib{https://elibrary.ru/item.asp?id=23421414}
\transl
\jour Izv. Math.
\yr 2015
\vol 79
\issue 1
\pages 60--73
\crossref{https://doi.org/10.1070/IM2015v079n01ABEH002734}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000350754500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924328952}
Linking options:
http://mi.mathnet.ru/eng/izv8195https://doi.org/10.4213/im8195 http://mi.mathnet.ru/eng/izv/v79/i1/p63
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
O. N. German, “Diophantine exponents of lattices”, Proc. Steklov Inst. Math., 296, suppl. 2 (2017), 29–35
-
P. Bengoechea, N. Moshchevitin, N. Stepanova, “A note on badly approximable linear forms on manifolds”, Mathematika, 63:2 (2017), 587–601
-
O. N. German, “Transference theorems for diophantine approximation with weights”, Mathematika, 66:2 (2020), 325–342
|
Number of views: |
This page: | 363 | Full text: | 126 | References: | 52 | First page: | 36 |
|