RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2015, Volume 79, Issue 1, Pages 185–216 (Mi izv8227)  

This article is cited in 3 scientific papers (total in 3 papers)

On the standard conjecture and the existence of a Chow–Lefschetz decomposition for complex projective varieties

S. G. Tankeev

Vladimir State University

Abstract: We prove the Grothendieck standard conjecture $B(X)$ of Lefschetz type on the algebraicity of the operators $*$ and $\Lambda$ of Hodge theory for a smooth complex projective variety $X$ if at least one of the following conditions holds: $X$ is a compactification of the Néron minimal model of an Abelian scheme of relative dimension $3$ over an affine curve, and the generic scheme fibre of the Abelian scheme has reductions of multiplicative type at all infinite places; $X$ is an irreducible holomorphic symplectic (hyperkähler) 4-dimensional variety that coincides with the Altman–Kleiman compactification of the relative Jacobian variety of a family $\mathcal C\to\mathbb P^2$ of hyperelliptic curves of genus 2 with weak degenerations, and the canonical projection $X\to\mathbb P^2$ is a Lagrangian fibration. We also show that a Chow–Lefschetz decomposition exists for every smooth projective 3-dimensional variety $X$ which has the structure of a 1-parameter non-isotrivial family of K3-surfaces (with degenerations) or a family of regular surfaces of arbitrary Kodaira dimension $\varkappa$ with strong degenerations.

Keywords: standard conjecture of Lefschetz type, Néron minimal model, reduction of multiplicative type, K3-surface, hyperkähler variety, Chow–Lefschetz decomposition, Abel–Jacobi map.

Funding Agency Grant Number
Russian Foundation for Basic Research 12-01-00097
This paper was written with the financial support of RFBR (grant no. 12-01-00097).


DOI: https://doi.org/10.4213/im8227

Full text: PDF file (736 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2015, 79:1, 177–207

Bibliographic databases:

UDC: 512.7
MSC: 14C25, 14F25, 14J30, 14J35
Received: 28.02.2014

Citation: S. G. Tankeev, “On the standard conjecture and the existence of a Chow–Lefschetz decomposition for complex projective varieties”, Izv. RAN. Ser. Mat., 79:1 (2015), 185–216; Izv. Math., 79:1 (2015), 177–207

Citation in format AMSBIB
\Bibitem{Tan15}
\by S.~G.~Tankeev
\paper On the standard conjecture and the existence of a~Chow--Lefschetz decomposition for complex projective varieties
\jour Izv. RAN. Ser. Mat.
\yr 2015
\vol 79
\issue 1
\pages 185--216
\mathnet{http://mi.mathnet.ru/izv8227}
\crossref{https://doi.org/10.4213/im8227}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3352586}
\zmath{https://zbmath.org/?q=an:06428109}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2015IzMat..79..177T}
\elib{http://elibrary.ru/item.asp?id=23421418}
\transl
\jour Izv. Math.
\yr 2015
\vol 79
\issue 1
\pages 177--207
\crossref{https://doi.org/10.1070/IM2015v079n01ABEH002738}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000350754500008}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924340281}


Linking options:
  • http://mi.mathnet.ru/eng/izv8227
  • https://doi.org/10.4213/im8227
  • http://mi.mathnet.ru/eng/izv/v79/i1/p185

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. G. Tankeev, “On an inductive approach to the standard conjecture for a fibred complex variety with strong semistable degeneracies”, Izv. Math., 81:6 (2017), 1253–1285  mathnet  crossref  crossref  adsnasa  isi  elib
    2. J. Suh, “Standard conjecture of Künneth type with torsion coefficients”, Algebra Number Theory, 11:7 (2017), 1573–1596  crossref  mathscinet  zmath  isi  scopus
    3. S. G. Tankeev, “O standartnoi gipoteze dlya rassloennogo proizvedeniya trekh ellipticheskikh poverkhnostei s poparno neperesekayuschimisya diskriminantnymi lokusami”, Izv. RAN. Ser. matem., 83:3 (2019), 213–256  mathnet  crossref
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:396
    Full text:61
    References:64
    First page:44

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019