RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2015, Volume 79, Issue 2, Pages 77–100 (Mi izv8253)  

This article is cited in 4 scientific papers (total in 4 papers)

A strengthening of a theorem of Bourgain and Kontorovich. III

I. D. Kan

Moscow Aviation Institute (State University of Aerospace Technologies)

Abstract: We prove that the set of positive integers contains a positive proportion of denominators of the finite continued fractions all of whose partial quotients belong to the alphabet $\{1,2,3,4,10\}$. The corresponding theorem was previousy known only for the alphabet $\{1,2,3,4,5\}$ and for alphabets of larger cardinality.

Keywords: continued fraction, continuant, trigonometric sum, Zaremba's conjecture.

Funding Agency Grant Number
Russian Foundation for Basic Research 12-01-00681-a
The research was financially supported by RFBR (grant no. 12-01-00681-a).


DOI: https://doi.org/10.4213/im8253

Full text: PDF file (655 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2015, 79:2, 288–310

Bibliographic databases:

Document Type: Article
UDC: 511.321+511.31
MSC: Primary 11J70; Secondary 11A55, 11L07
Received: 16.05.2014

Citation: I. D. Kan, “A strengthening of a theorem of Bourgain and Kontorovich. III”, Izv. RAN. Ser. Mat., 79:2 (2015), 77–100; Izv. Math., 79:2 (2015), 288–310

Citation in format AMSBIB
\Bibitem{Kan15}
\by I.~D.~Kan
\paper A~strengthening of a~theorem of Bourgain and Kontorovich. III
\jour Izv. RAN. Ser. Mat.
\yr 2015
\vol 79
\issue 2
\pages 77--100
\mathnet{http://mi.mathnet.ru/izv8253}
\crossref{https://doi.org/10.4213/im8253}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3352591}
\zmath{https://zbmath.org/?q=an:06443924}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2015IzMat..79..288K}
\elib{http://elibrary.ru/item.asp?id=23421423}
\transl
\jour Izv. Math.
\yr 2015
\vol 79
\issue 2
\pages 288--310
\crossref{https://doi.org/10.1070/IM2015v079n02ABEH002743}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000353635400004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928746312}


Linking options:
  • http://mi.mathnet.ru/eng/izv8253
  • https://doi.org/10.4213/im8253
  • http://mi.mathnet.ru/eng/izv/v79/i2/p77

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. I. D. Kan, “Inversion of the Cauchy–Bunyakovskii–Schwarz Inequality”, Math. Notes, 99:3 (2016), 378–381  mathnet  crossref  crossref  mathscinet  isi  elib
    2. I. D. Kan, “A strengthening of a theorem of Bourgain and Kontorovich. IV”, Izv. Math., 80:6 (2016), 1094–1117  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    3. I. D. Kan, “A strengthening of a theorem of Bourgain and Kontorovich. V”, Proc. Steklov Inst. Math., 296 (2017), 125–131  mathnet  crossref  crossref  mathscinet  isi  elib
    4. I. D. Kan, “Is Zaremba's conjecture true?”, Sb. Math., 210:3 (2019), 364–416  mathnet  crossref  crossref  elib
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:289
    Full text:32
    References:39
    First page:37

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019