RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 2016, Volume 80, Issue 3, Pages 173–183 (Mi izv8272)  

This article is cited in 1 scientific paper (total in 1 paper)

Universal theory of a free polynilpotent group

E. I. Timoshenko

Novosibirsk State Technical University

Abstract: We prove that a free group of rank $\ge2$ in an arbitrary polynilpotent variety $\mathfrak N_{c_1}\mathfrak N_{c_2}…\mathfrak N_{c_s}$, $s\ge2$, $c_i\ge1$, $c_s\ge2$, has undecidable universal theory.

Keywords: universal theory, variety of groups, soluble group, nilpotent group, polynilpotent group.

Funding Agency Grant Number
Russian Foundation for Basic Research 15-01-01485
Ministry of Education and Science of the Russian Federation 14.В37.21.0359
This work was supported by the Russian Foundation for Basic Research (grant no. 15-01-01485) and by the Ministry of Education and Science of the Russian Federation (project no. 14.V37.21.0359).


DOI: https://doi.org/10.4213/im8272

Full text: PDF file (490 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 2016, 80:3, 623–632

Bibliographic databases:

UDC: 512.54.05
MSC: Primary 10F10; Secondary 03B25
Received: 02.07.2014
Revised: 11.01.2015

Citation: E. I. Timoshenko, “Universal theory of a free polynilpotent group”, Izv. RAN. Ser. Mat., 80:3 (2016), 173–183; Izv. Math., 80:3 (2016), 623–632

Citation in format AMSBIB
\Bibitem{Tim16}
\by E.~I.~Timoshenko
\paper Universal theory of a~free polynilpotent group
\jour Izv. RAN. Ser. Mat.
\yr 2016
\vol 80
\issue 3
\pages 173--183
\mathnet{http://mi.mathnet.ru/izv8272}
\crossref{https://doi.org/10.4213/im8272}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3507392}
\zmath{https://zbmath.org/?q=an:06629501}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2016IzMat..80..623T}
\elib{https://elibrary.ru/item.asp?id=26414232}
\transl
\jour Izv. Math.
\yr 2016
\vol 80
\issue 3
\pages 623--632
\crossref{https://doi.org/10.1070/IM8272}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000384880300009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84987668284}


Linking options:
  • http://mi.mathnet.ru/eng/izv8272
  • https://doi.org/10.4213/im8272
  • http://mi.mathnet.ru/eng/izv/v80/i3/p173

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. I. Timoshenko, “Theories of relatively free solvable groups with extra predicate”, Algebra and Logic, 57:4 (2018), 295–308  mathnet  crossref  crossref  isi
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:228
    Full text:24
    References:39
    First page:14

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021